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Goal:

* Develop a method for aligning batches of images using a
non-affine warp (or “nonlinear domain transformation”).

* RASL (Robust Batch Alignment of Images by Sparse and
Low-Rank Decomposition): Peng et al (2012). Uses affine
transformations.

* Leads to a low-dimensional representation of a batch (dimension
reduction), ignoring the “non-essential” variability.

* Image registration.
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Related work – Refs not exhaustive!

* Optical flows Horn & Schnuck (1981), Lucas & Kanade

(1981), Brox (2004), ...

Construct a “velocity field” moving pixels of one image to match
the pixels of the other image. Not necessarily a diffeomorphism of
image domain.

* LDDMM Trouvé(1998), Joshi(2004), Beg(2005), ...

Construct a path in the manifold of diffeomorphisms from one
image to the other. Can develop an “average” image of a batch, or
construct a path corresponding to movement along geodesics ( e.g.
age progression).

* SIFT/SURF Lowe (2004), Bay (2008),...

Local descriptor methods: match local features, then organize
them together.
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RASL review

* What I like about RASL:

- Not a single “mean” or “reference” image, but a
(low-dimensional) subspace.

- L1 norm is used for error (“sparse”): more robust against
occlusions, misaligned edges etc.

Goal: Given several images, align them to a common subspace.

Peng’12:

min
A,E ,τ

rank(A) + λ‖E‖0 s.t. D ◦ τ = A + E

Transformed images: Di ◦ τi , assume they align to produce a
low-rank template A.
The errors E are assumed sparse.
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Let D = m × n matrix of images (stacked as columns),
τ = set of image transformations, D ◦ τ : aligned images,
A = common template

Relaxation: rank(A) is relaxed to nuclear norm (sum of singular
values) and ‖E‖0 is relaxed to ‖E‖1. But

min
A,E ,τ

‖A‖∗ + λ‖E‖1 s.t. D ◦ τ = A + E

is a non-convex problem: D ◦ τ is nonlinear even though τ ’s are
affine.

Oleg Makhnin New Mexico Tech



Intro RASL penalized RASL non-affine RASL Results

Solve iteratively: given τ ,

min
A,E ,∆τ

‖A‖∗ + λ‖E‖1 s.t. D ◦ τ +
n∑

i=1

Ji∆τiε
T
i = A + E (1)

is a convex problem, then set τnew = τ + ∆τ .

(1) is solved using Augmented Lagrange Multiplier (ALM)
Method.

Examples: faces (many recognition methods need to align faces
first), video processing (image stabilization, tracking objects etc.)

No guarantees, but seems to work well if the initial misalignment is
not too large.
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Details
Solution: iterative linearization. D ◦ (τ + ∆τ) ≈ D ◦ τ +

∑n
i=1 Ji∆τiε

T
i , Ji is

Jacobian of ith image w.r.t. transformation τi and {εi} is the standard basis
for Rn.

Here, τi are assumed to belong to some group G described by p parameters
(e.g. G = SE(2) (translations + rotations), GL(3) etc), Ji is then m × p,
τ = Stack(τi , i = 1, ..., n).
Let h = D ◦ τ +

∑n
i=1 Ji∆τiε

T
i − A− E . Then

Lµ := ‖A‖∗ + λ‖E‖1 + 〈Y , h(A,E ,∆τ)〉+
µ

2
‖h(A,E ,∆τ)‖2

F

where Y is Lagrange Multiplier matrix and µk is an increasing sequence.

Note: 〈X ,Y 〉 = tr(XTY ) and ‖ · ‖F is Frobenius norm
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Then iterate

(Ak+1,Ek+1,∆τk+1) = arg min
A,E ,∆τ

Lµk (A,E ,∆τ,Yk)

Yk+1 = Yk + µkh(Ak+1,Ek+1,∆τk+1)

minA,E ,∆τ is done by alternating minimization w.r.t. A, E or ∆τ , using SVD
with soft thresholding (shrinkage).
Three levels of iteration in all. Parameter λ is set to 1/

√
m.

Theoretical convergence proven only for two unknowns in the alt. minimization
scheme!

A MATLAB implementation is available, takes about 3 minutes on a 2.8 GHz

Macbook Pro for 100 images, each 80× 60.
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penalized RASL

Transformations are parameterized τ(ξ), we need regularity

min
A,E ,τ

‖A‖∗ + λ‖E‖1 + κC (ξ) s.t. D ◦ τ(ξ) = A + E

C (·) is a convex penalty term.

Then linearize: given ξ,

min
A,E ,∆ξ

‖A‖∗+λ‖E‖1+κJC (ξ)∆ξ s.t. D◦τ+
n∑

i=1

Ji∆τi (∆ξ)εTi = A+E

(2)
should work at least for small κ
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Raw RASL

RASL-penalized Low-rank A

Example:

Handwritten
digits
(MNIST)
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RASL-n (non-affine)

Extend to a piecewise-affine transform, with parameterization ξ= x
and y coords of new nodes into which the initial rectangular grid is
transformed.

=⇒

*Multiscale: start with an affine (RASL) alignment, then subdivide
into 2x2 grid, then subdivide into 4x4 etc.
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Penalty: a) orthogonality (
−→
AB ·

−→
AC )2 + (

−→
AB ·

−→
BD)2 + ...

b) length ((|AB| − `)+)2 + ((|AC | − `)+)2 + ...
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Raw RASL-penalized

RASL-n Low-rank A
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Gore
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Aligned Low-rank component
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average image:
before and after

Eigenfaces
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Why RASL works

“Safety in numbers”: ?
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Conclusions

* Has shown potential for improvement to RASL for aligning
batches of images

* However, the method requires more tuning parameters to be
chosen; is somewhat brittle + time consuming.

* Additional structure in video can be exploited via penalizing the
difference in neighboring frames alignment parameters ξt − ξt+1

(in progress).
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Future work

* more stable/ faster implementation of penalized RASL

* incorporate features of LDDMM

* online methods

* background/foreground
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Thank you!
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