A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

Oleg Makhnin
Dept. of Mathematics
New Mexico Tech

October 17, 2008

A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

Abstract

Stochastic precipitation generators produce time series of precipitation in a region, of arbitrary length. However, the modeling process should account for a large quantity of zero values. One possible approach is presented, when we model the precipitation occurrence and amounts simultaneously, via a truncated normal distribution. This approach also allows us to fit correlations and lag-1 cross-correlations between the study sites.

Intro

Precipitation data

Multiple variables are observed $R_{j t}$, sites (gauges) $j=1, \ldots, N$, time $t=1, \ldots, T$.
A lot of observed values are 0 , others are rounded to 0.01 inch. Have to deal with dependencies across time, as long as dependencies between the sites.

Use of Normal distribution

Typical picture of the precipitation values: [includegraphics]
Typical picture of the Normal distribution: [includegraphics]

TPT: truncated and power-transformed

Let $W=$ normally distributed precipitation potential
Truncated: consider the negative values of W to lead to zero precipitation
Power-transformed: the positive values of W lead to precipitation $R=W^{1 / \beta}$
Lets you fit both the occurrence and amount of precipitation.
Parameters: $\mu=$ mean, $\sigma=$ st.dev., β.
Pros: Normal distribution easy to work with (matrices)
Cons: "Missing data" whenever $R<0$

Study areas

Oleg Makhnin Dept. of Mathematics New Mexico Tech
A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

Some fit results

Plotting the CDF (cumulative distribution function $=$ percent of observations below a value): CO daily totals, months 1-6

Oleg Makhnin Dept. of Mathematics New Mexico Tech
A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

CO daily per station, August !!change graph !!

A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

Some fit results

- Fits fairly well for each station separately, also for total of all stations,
- Estimate precipitation probability as $p r=P(W>0)$ mean positive: $p r>0.5$
mean negative: $p r<0.5$
- Values of beta between 1.5 and 3 .

Spatial dependency

Typically, if we plot covariance of precipitation measurements versus distance we observe something like this

Temporal dependency

We might also be concerned with persistency in time: correlation (or covariance) of $R_{j t}$ with $R_{k, \mathbf{t}+\mathbf{1}}$ - between sites j, k.

3

4

Oleg Makhnin Dept. of Mathematics New Mexico Tech
A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

Strange but persistent patterns!

Even more strange: "correlation inversion" for MN area

But: no correlation inversion for the CO study area:

4

7

2

5

8

3

6

9
$\left.\begin{array}{l}\stackrel{\sim}{0} \\ + \\ \sim\end{array}\right] \quad$ ••

Oleg Makhnin Dept. of Mathematics New Mexico Tech
A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

Autoregression models

Scalar autoregression model persistency at a single site by using

$$
W_{t+1}-\text { mean }=r\left(W_{t}-\text { mean }\right)+\text { error }
$$

Values of r close to 1 : very persistent climate,
Values of r close to 0 : "white noise"

Multivariate autoregression (MAR)

combine all sites in a region, vector \mathbf{W}_{t} :

$$
\mathbf{W}_{t+1}-\text { mean }=\mathbf{r}\left(\mathbf{W}_{t}-\text { mean }\right)+\boldsymbol{\xi}_{t}
$$

Matrix-valued \mathbf{r}, with eigenvalues within unit circle to insure stationarity.

Multivariate AR

Goal: mimic the lag-1 behavior we observed earlier
Correction:

$$
\left\{\begin{array}{l}
\mathbf{Z}_{t}=\mathbf{\mathbf { Z } _ { t - 1 }}+\boldsymbol{\xi}_{t} \tag{1}\\
\mathbf{W}_{t}=\mathbf{Z}_{t}+\mathbf{S}+\varepsilon_{t},
\end{array}\right.
$$

S: station effects (means)
$\boldsymbol{\xi}$ are correlated, variance matrix \mathbf{V}_{ξ}
ε are white noise

Multivariate AR

Number of parameters describing \mathbf{r} and \mathbf{V}_{ξ} is $N^{2}+N(N+1) / 2$.
On the other hand:
"lag- 0 " autocovariance of $\mathbf{Z}, \hat{\Sigma}_{0}$ has $N(N+1) / 2$
and lag-1 autocovariance $\hat{\Sigma}_{1}$ has N^{2} parameters
Thus, if $\hat{\Sigma}_{0}$ and $\hat{\Sigma}_{1}$ were known, we would get:

$$
\begin{equation*}
\mathbf{r}^{T}=\hat{\Sigma}_{0}^{-1} \hat{\Sigma}_{1}, \quad \mathbf{V}_{\xi}=\hat{\Sigma}_{0}-\mathbf{r} \hat{\Sigma}_{0} \mathbf{r}^{T} \tag{2}
\end{equation*}
$$

Fitting the model

Use Markov Chain Monte Carlo, with Gibbs sampler

Things to estimate: $\mathbf{r}, \mathbf{V}_{\xi}$, Station effects, β,
$W_{j t}$ for all $j, t \ldots$ etc \ldots etc \ldots
Rename them $\left\{X_{1}, X_{2}, X_{3}, \ldots . X_{d}\right\}$
Main idea: draw a parameter, say X_{1} from its full conditional posterior $p\left(X_{1} \mid X_{2}, X_{3}, \ldots, X_{d}\right)$, then draw X_{2} from $p\left(X_{2} \mid X_{1}, X_{3}, \ldots, X_{d}\right)$
X_{d} from $p\left(X_{d} \mid X_{1}, X_{2}, \ldots ., X_{d-1}\right)$
then repeat this procedure over and over again.
After convergence, get samples from all the parameters to find the means, credible intervals etc.

A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

QUESTIONS?

Oleg Makhnin Dept. of Mathematics New Mexico Tech
A multisite stochastic precipitation generator using truncated and power-transformed normal distribution

THANK YOU!

www.nmt.edu/~olegm/talks/Multivar/ for pdf file

