Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Oleg Makhnin
New Mexico Tech
Dept. of Mathematics

October 26, 2007

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Intro: why Stochastic?

Brownian Motion/ Wiener process
Stochastic Integration
Stochastic DE's
Applications

Intro: why Stochastic?

Brownian Motion/ Wiener process
Stochastic Integration
Stochastic DE's
Applications

Intro: why Stochastic?

Brownian Motion/ Wiener process

Stochastic Integration

Stochastic DE's
Applications

Intro: why Stochastic?

Brownian Motion/ Wiener process

Stochastic Integration

Stochastic DE's
Applications

Intro: why Stochastic?

Brownian Motion/ Wiener process

Stochastic Integration

Stochastic DE's
Applications

Intro: why Stochastic?

Brownian Motion/ Wiener process

Stochastic Integration

Stochastic DE's
Applications

Intro

Deterministic ODE

$$
\left\{\begin{array}{l}
X^{\prime}(t)=a(t, X(t)) \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

Intro

Deterministic ODE

$$
\left\{\begin{array}{l}
X^{\prime}(t)=a(t, X(t)) \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

However, noise is usually present

$$
\left\{\begin{array}{l}
X^{\prime}(t)=a(t, X(t))+b(t, X(t)) \omega(t), \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

Deterministic ODE

$$
\left\{\begin{array}{l}
X^{\prime}(t)=a(t, X(t)) \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

However, noise is usually present

$$
\left\{\begin{array}{l}
X^{\prime}(t)=a(t, X(t))+b(t, X(t)) \omega(t), \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

Natural requirements for noise ω :

- $\omega(t)$ is random with mean 0
$-\omega(t)$ is independent of $\omega(s), t \neq s \quad \Rightarrow$ "White noise"
- ω is continuous

Intro

Deterministic ODE

$$
\left\{\begin{array}{l}
X^{\prime}(t)=a(t, X(t)) \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

However, noise is usually present

$$
\left\{\begin{array}{l}
X^{\prime}(t)=a(t, X(t))+b(t, X(t)) \omega(t), \quad t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

Natural requirements for noise ω :

- $\omega(t)$ is random with mean 0
$-\omega(t)$ is independent of $\omega(s), t \neq s \quad \Rightarrow$ "White noise"
- ω is continuous

Strictly speaking, ω does not exist!

Brownian motion

Intuitive: "Random walk", "Diffusion"
Stocks: you cannot predict the future behavior based on past performance

Brownian motion

Several paths of Brownian Motion and LIL bounds

Oleg Makhnin New Mexico Tech Dept. of Mathematics
Stochastic Integration and Stochastic Differential Equations: a gentle introduction

2D Brownian motion

Oleg Makhnin New Mexico Tech Dept. of Mathematics
Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Brownian motion: Axioms

BM is continuous (but not smooth, see later!), $\quad W(0)=0$
Normality:

$$
W(t+\Delta t)-W(t) \sim \operatorname{Normal}\left(\text { mean }=0, \text { variance } \sigma^{2}=\Delta t\right)
$$

$$
\sigma=\sqrt{\Delta t}
$$

Normal because sum of many small, independent increments.

Brownian motion: Axioms

Independence:

Brownian motion: Axioms

Independence:

Brownian motion: Axioms

Independence:

Fractal nature

Oleg Makhnin New Mexico Tech Dept. of Mathematics
Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Fractal nature

Oleg Makhnin New Mexico Tech Dept. of Mathematics
Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Integration

Need $\int_{0}^{T} h(t) d W(t)$

Integration

Need $\int_{0}^{T} h(t) d W(t)$
How would you define it?

- For which functions h ?
- Answer is random (since $W(t)$ is)

Integration

Need $\int_{0}^{T} h(t) d W(t)$
How would you define it?

- For which functions h ?
- Answer is random (since $W(t)$ is)

Riemann integral $\int_{0}^{T} h(t) d t \approx \sum_{i=1}^{n} h\left(t_{i}^{*}\right) \Delta t_{i}$

Integration

Need $\int_{0}^{T} h(t) d W(t)$
How would you define it?

- For which functions h ?
- Answer is random (since $W(t)$ is)

Riemann integral $\int_{0}^{T} h(t) d t \approx \sum_{i=1}^{n} h\left(t_{i}^{*}\right) \Delta t_{i}$
Stieltjes integral $\int_{0}^{T} h(t) d F(t) \approx \sum_{i=1}^{n} h\left(t_{i}^{*}\right)\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right]$ where F has finite variation

- when F^{\prime} exists, then $\int_{0}^{T} h(t) d F(t)=\int_{0}^{T} h(t) F^{\prime}(t) d t$

Stochastic Integration

Try the same:

$$
\int_{0}^{T} h(t) d W(t) \approx \sum_{i=1}^{n} h\left(t_{i}^{*}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]
$$

does this still work?

Stochastic Integration

Try the same:

$$
\int_{0}^{T} h(t) d W(t) \approx \sum_{i=1}^{n} h\left(t_{i}^{*}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]
$$

does this still work?
W does not have finite variation

Stochastic Integration

Try the same:

$$
\int_{0}^{T} h(t) d W(t) \approx \sum_{i=1}^{n} h\left(t_{i}^{*}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]
$$

does this still work?
W does not have finite variation
let $\max \Delta t_{i} \rightarrow 0$, limit in what sense? Depends on t_{i}^{*}

Stochastic Integration

Try the same:

$$
\int_{0}^{T} h(t) d W(t) \approx \sum_{i=1}^{n} h\left(t_{i}^{*}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]
$$

does this still work?
W does not have finite variation
let $\max \Delta t_{i} \rightarrow 0$, limit in what sense? Depends on t_{i}^{*}
Itô

> Stratonovich

$$
\sum_{i=1}^{n} h\left(t_{i}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right] \quad \sum_{i=1}^{n} h\left(\frac{t_{i}+t_{i+1}}{2}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]
$$

Stochastic Integration: examples

$$
\int_{0}^{T} d W(t) \approx
$$

Stochastic Integration: examples

$$
\begin{aligned}
& \int_{0}^{T} d W(t) \approx \\
& \left.\quad \sum W\left(t_{i+1}\right)-W\left(t_{i}\right)=W(T) \text { of course (recall } W(0)=0\right)
\end{aligned}
$$

Stochastic Integration: examples

$$
\begin{aligned}
& \int_{0}^{T} d W(t) \approx \\
& \left.\quad \sum W\left(t_{i+1}\right)-W\left(t_{i}\right)=W(T) \text { of course (recall } W(0)=0\right) \\
& \int_{0}^{T} t d W(t) \approx
\end{aligned}
$$

Stochastic Integration: examples

$$
\begin{aligned}
& \int_{0}^{T} d W(t) \approx \\
& \left.\quad \sum W\left(t_{i+1}\right)-W\left(t_{i}\right)=W(T) \text { of course (recall } W(0)=0\right) \\
& \int_{0}^{T} t d W(t) \approx \\
& \quad \sum t_{i}\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]=? \text { to be continued }
\end{aligned}
$$

Stochastic Integration: examples

$$
\begin{aligned}
& \int_{0}^{T} d W(t) \approx \\
& \quad \int_{0}^{T} \quad \sum W\left(t_{i+1}\right)-W\left(t_{i}\right)=W(T) \approx \\
& \left.\quad \sum t_{i}\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]=\text { ? to be course (recall } W(0)=0\right) \\
& \quad \begin{array}{l}
\text { so far, Itô and Stratonovich integrals agree. } \\
\\
\\
\text { However, }
\end{array}
\end{aligned}
$$

Stochastic Integration: examples

$$
\begin{aligned}
& \int_{0}^{T} d W(t) \approx \\
& \left.\quad \sum W\left(t_{i+1}\right)-W\left(t_{i}\right)=W(T) \text { of course (recall } W(0)=0\right) \\
& \int_{0}^{T} t d W(t) \approx \\
& \quad \sum t_{i}\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]=\text { ? to be continued } \\
& \quad \text { so far, Itô and Stratonovich integrals agree. } \\
& \quad \text { However, } \\
& \int_{0}^{T} W(t) d W(t) \approx \sum W\left(t_{i}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]
\end{aligned}
$$

Stochastic Integration: $\int_{0}^{T} W(t) d W(t)$

$$
\begin{aligned}
& \text { note, } \\
& \\
& \\
& 2 \sum W\left(t_{i}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]
\end{aligned}
$$

Stochastic Integration: $\int_{0}^{T} W(t) d W(t)$
note,

$$
\begin{aligned}
& 2 \sum W\left(t_{i}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right] \\
& =\sum W^{2}\left(t_{i+1}\right)-W^{2}\left(t_{i}\right)-\sum\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)^{2}
\end{aligned}
$$

Stochastic Integration: $\int_{0}^{T} W(t) d W(t)$

note,

$$
\begin{aligned}
& 2 \sum W\left(t_{i}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right] \\
& =\sum W^{2}\left(t_{i+1}\right)-W^{2}\left(t_{i}\right)-\sum\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)^{2} \\
& \rightarrow W^{2}(T)-T
\end{aligned}
$$

(brown part by Law of Large numbers)

Stochastic Integration: $\int_{0}^{T} W(t) d W(t)$

note,

$$
\begin{aligned}
& 2 \sum W\left(t_{i}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right] \\
& =\sum W^{2}\left(t_{i+1}\right)-W^{2}\left(t_{i}\right)-\sum\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)^{2} \\
& \rightarrow W^{2}(T)-T
\end{aligned}
$$

(brown part by Law of Large numbers)
Hence, $\int_{0}^{T} W(t) d W(t)=\frac{W^{2}(T)}{2}-\frac{T}{2}$

Stochastic Integration: $\int_{0}^{T} W(t) d W(t)$

note,

$$
\begin{aligned}
& 2 \sum W\left(t_{i}\right)\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right] \\
& =\sum W^{2}\left(t_{i+1}\right)-W^{2}\left(t_{i}\right)-\sum\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)^{2} \\
& \rightarrow W^{2}(T)-T
\end{aligned}
$$

(brown part by Law of Large numbers)
Hence, $\int_{0}^{T} W(t) d W(t)=\frac{W^{2}(T)}{2}-\frac{T}{2}$
Wish it were easier?

Stochastic Differential Equations

$$
\begin{gathered}
X(t)=\int_{0}^{t} b(s, X(s)) d W(s), \quad t>0 \\
\Downarrow
\end{gathered}
$$

$$
d X(s)=b(s, X(s)) d W(s) \text { - Stochastic differential }
$$

Full form

$$
\left\{\begin{array}{l}
d X(s)=a(s, X(s)) d s+b(s, X(s)) d W(s) \\
X(0)=X_{0}
\end{array}\right.
$$

(can be random)
(note that $d W / d s$ does not exist)

Itô Formula

$$
\text { Let } d X(t)=a(t, X(t)) d t+b(t, X(t)) d W(t)
$$

then, the chain rule is
$d g(t, X(t))=g_{t} d t+g_{x} d X(t)+g_{x x} \frac{b^{2}(t, X(t))}{2} d t$

- "extra" term
heuristic: follows from Taylor series assuming $(d W(t))^{2}=d t$
for example,

$$
\begin{aligned}
d\left(W^{2}(s)\right)= & W^{2}(s+d s)-W^{2}(s) \\
= & {[W(s+d s)+W(s)][W(s+d s)-W(s)] } \\
= & {[W(s+d s)-W(s)][W(s+d s)-W(s)] } \\
& \quad+2 W(s)[W(s+d s)-W(s)] \\
= & 2 W(s) d W(s)+d s
\end{aligned}
$$

for example,

$$
\begin{aligned}
d\left(W^{2}(s)\right)= & W^{2}(s+d s)-W^{2}(s) \\
= & {[W(s+d s)+W(s)][W(s+d s)-W(s)] } \\
= & {[W(s+d s)-W(s)][W(s+d s)-W(s)] } \\
& \quad+2 W(s)[W(s+d s)-W(s)] \\
= & 2 W(s) d W(s)+d s
\end{aligned}
$$

Hence, $\int_{0}^{t} W(s) d W(s)=\frac{W^{2}(t)}{2}-\frac{t}{2}$

$d g(t, X(t))=g_{t} d t+g_{x} d X(t)+g_{x x} \frac{b^{2}}{2} d t$

Exercise:

$$
d\left(W^{3}(s)\right)=?
$$

$d g(t, X(t))=g_{t} d t+g_{x} d X(t)+g_{x x} \frac{b^{2}}{2} d t$

Exercise:

$$
\begin{aligned}
& d\left(W^{3}(s)\right)=? \\
& =3 W^{2}(s) d W(s)+3 W(s) d s
\end{aligned}
$$

$d g(t, X(t))=g_{t} d t+g_{x} d X(t)+g_{x x} \frac{b^{2}}{2} d t$

Exercise:

$$
\begin{aligned}
& d\left(W^{3}(s)\right)=? \\
& =3 W^{2}(s) d W(s)+3 W(s) d s
\end{aligned}
$$

$$
\text { therefore, } \int_{0}^{t} W^{2}(s) d W(s)=\frac{W^{3}(t)}{3}-\int_{0}^{t} W(s) d s
$$

$d g(t, X(t))=g_{t} d t+g_{x} d X(t)+g_{x x} \frac{b^{2}}{2} d t$

Exercise:

$$
\begin{aligned}
& d\left(W^{3}(s)\right)=? \\
& =3 W^{2}(s) d W(s)+3 W(s) d s \\
& \text { therefore, } \int_{0}^{t} W^{2}(s) d W(s)=\frac{W^{3}(t)}{3}-\int_{0}^{t} W(s) d s \\
& d(s W(s))=?
\end{aligned}
$$

$d g(t, X(t))=g_{t} d t+g_{x} d X(t)+g_{x x} \frac{b^{2}}{2} d t$

Exercise:

$$
\begin{aligned}
& d\left(W^{3}(s)\right)=? \\
& =3 W^{2}(s) d W(s)+3 W(s) d s \\
& \text { therefore, } \int_{0}^{t} W^{2}(s) d W(s)=\frac{W^{3}(t)}{3}-\int_{0}^{t} W(s) d s \\
& d(s W(s))=? \\
& =W(s) d s+s d W(s)
\end{aligned}
$$

$$
\text { therefore } \int_{0}^{t} s d W(s)=t W(t)-\int_{0}^{t} W(s) d s
$$

Solution

What does the solution look like?
Note that for Itô integrals, we always have

$$
\begin{gathered}
E \int_{0}^{t} h(s) d W(s)=0 \quad \text { Expected value } \\
E\left[\int_{0}^{t} h(s) d W(s)\right]^{2}=\int_{0}^{t} E\left[h^{2}(s)\right] d s \quad \text { Variance }
\end{gathered}
$$

(can see using the Riemann sums).
For example, the result of $\int_{0}^{t} s d W(s)$ is a Normal random variable, with mean 0 and variance $=$

Solution

What does the solution look like?
Note that for Itô integrals, we always have

$$
\begin{gathered}
E \int_{0}^{t} h(s) d W(s)=0 \quad \text { Expected value } \\
E\left[\int_{0}^{t} h(s) d W(s)\right]^{2}=\int_{0}^{t} E\left[h^{2}(s)\right] d s \quad \text { Variance }
\end{gathered}
$$

(can see using the Riemann sums).
For example, the result of $\int_{0}^{t} s d W(s)$ is a Normal random variable, with mean 0 and variance $=t^{3} / 3$

Langevin equation

More realistic Brownian motion: resistance/friction

$$
d X(t)=-\beta X(t) d t+\sigma d W(t)
$$

$X(t)=$ particle velocity
Then, can obtain using Itô formula, integrating factor $e^{-\beta t}$

$$
X(t)=e^{-\beta t} X_{0}+\int_{0}^{t} e^{-\beta(t-s)} d W(s)
$$

Stock price

$$
d X(t)=r X(t) d t+\sigma X(t) d W(t)
$$

can express $d \log (X(t))$ and get

$$
X(t)=\exp \left[\left(r-\frac{\sigma^{2}}{2}\right) t+\sigma W(t)\right]
$$

Note that for both equations, expected value $E[X(t)]$ coincides with the solution of deterministic equation, here

$$
d \bar{X}(t)=r \bar{X}(t) d t
$$

A nonlinear equation

Consider a logistic equation for population dynamics: non-linear

$$
d X(t)=r X(t)(1-X(t)) d t+\sigma X(t) d W(t)
$$

Here, deterministic solution of

$$
d \bar{X}(t)=r \bar{X}(t)(1-\bar{X}(t)) d t
$$

is different from the mean of stochastic solutions

A nonlinear equation

$$
d X(t)=r X(t)(1-X(t)) d t+\sigma X(t) d W(t)
$$

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Math Finance

Hedge funds

Behind the veil

Big market losses provide insights into a volatile financial world

THEY are secretive, clever and often highly lucrative. But the veil of mystery that has shrouded hedge funds was partially lifted in the past fortnight after market turmoil left many of them with big losses-and anxious investors.
The Economist August 18th 2007

Among the hedge funds hardest hit were credit funds and those using a type of statistical arbitrage, known as long-short equity neutral. Stocks in these portfolios, are picked assuming certain shares will rise and others will fall. In this case, the complex models that drive them were upended by the extreme market volatility. Four building-blocks of such models are stock valuations, quality, price momentum and earnings momentum. These usually offset each other, but when they all started suffering, the models went awry. Some of the world's biggest hedge funds all began selling the same things at the same time. "You had the proverbial camel trying to get through the eye of the needle," an analyst says.

Math Finance

Danger. Quant at work

Many funds will report to their investors in the coming weeks. Much depends on whether the pension funds, endowments and rich individuals investing in hedge funds hold their nerve. The "lock-up" periods for fund investors vary. Many allow redemptions only monthly or quarterly. Au^{-} gust 15 th was a big day for those who need to give 45 days notice before redeeming their stakes by the end of September.

The saga has damaged the image of computer-driven funds, generally so powerful that they can account for up to half of a stock exchange's daily trading volume. But there is no way the clocks will be turned back. "People aren't going to give up their computers and go back to insider information and tips," says David Harding, a fund manager in London.

It is also unclear who will gain from the turmoil-and someone always takes the

Math Finance

- Optimal control of investments
- Black-Scholes formula for option pricing
- Based on

$$
d X(t)=r X(t) d t+\sigma X(t) d W(t)
$$

and beyond

Other applications

Boundary value problems: e.g. solving a Dirichlet problem
$\Delta f=0$ (harmonic) in the region $U \in \mathbb{R}^{n}$
$f=g$ on the boundary ∂U, given g
a stochastic solution is

$$
f(x)=E_{x}[g(\text { point of first exit from } U)]
$$

E_{X} refers to Brownian motion started from x.

Other applications

Hydrology: porous media flow

$$
\left\{\begin{array}{lc}
\operatorname{div}(V)=0 & \text { incompressible flow } \\
V=-K \nabla P & \text { Darcy's law }
\end{array}\right.
$$

$\mathrm{V}=$ velocity, $\mathrm{P}=$ pressure field
$K=$ conductivity is stochastic

Other applications

Hydrology: porous media flow

$$
\left\{\begin{array}{lc}
\operatorname{div}(V)=0 & \text { incompressible flow } \\
V=-K \nabla P & \text { Darcy's law }
\end{array}\right.
$$

$\mathrm{V}=$ velocity, $\mathrm{P}=$ pressure field
$K=$ conductivity is stochastic
Filtering: determine the position of a stochastic process from noisy observation history. Kalman filter (discrete), Kalman-Bucy filter (continuous)

Other applications

Hydrology: porous media flow

$$
\left\{\begin{array}{lc}
\operatorname{div}(V)=0 & \text { incompressible flow } \\
V=-K \nabla P & \text { Darcy's law }
\end{array}\right.
$$

$\mathrm{V}=$ velocity, $\mathrm{P}=$ pressure field
$\mathrm{K}=$ conductivity is stochastic
Filtering: determine the position of a stochastic process from noisy observation history. Kalman filter (discrete), Kalman-Bucy filter (continuous)
Predator-prey models, Chemical reactions, Reservoir models

QUESTIONS?

THANK YOU!

WWW.nmt.edu/~olegm/SDE/for references

