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Deterministic ODE

X'(t)=a(t,X(t)) t>0
{ X(0) = Xo
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Deterministic ODE

X'(t)=a(t,X(t)) t>0
{ X(0) = Xo

However, noise is usually present

X'(t) = a(t, X(t)) + b(t, X(t))w(t), t>0
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X'(t)=a(t,X(t)) t>0
{ X(0) = Xo

However, noise is usually present

X'(t) = a(t, X(t)) + b(t, X(t))w(t), t>0
{ X(0) = Xo

Natural requirements for noise w:
- w(t) is random with mean 0
- w(t) is independent of w(s), t #s = "“White noise’
- w is continuous
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Deterministic ODE

X'(t)=a(t,X(t)) t>0
{ X(0) = Xo

However, noise is usually present

X'(t) = a(t, X(t)) + b(t, X(t))w(t), t>0
{ X(0) = Xo

Natural requirements for noise w:
- w(t) is random with mean 0
- w(t) is independent of w(s), t #s = "“White noise’
- w is continuous

Strictly speaking, w does not exist!
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Brownian motion

Brownian motion

i

O~
N

Intuitive: “"Random walk”, “Diffusion”
Stocks: you cannot predict the future behavior based on past
performance
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Intro Brownian motion Integration

Brownian motion

Several paths of Brownian Motion and LIL bounds
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Brownian motion

2D Brownian motion
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Intro Brownian motion Integration Applications

Brownian motion: Axioms

BM is continuous (but not smooth, see later!), W(0) =0

Normality:
W(t+At)—W(t) ~ Normal(mean = 0, variance 02 = At)

o= VAt

Normal because sum of many small, independent increments.
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Brownian motion

Brownian motion: Axioms
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Brownian motion

Fractal nature
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Integration

Integration

Need [, h(t) dW/(t)
How would you define it?
- For which functions h?
- Answer is random (since W(t) is)
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Integration

Integration

Need [, h(t) dW/(t)
How would you define it?
- For which functions h?
- Answer is random (since W(t) is)

T n
Riemann integral / h(t) dt = Z h(t;)At;
0 i=1
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Integration

Integration

Need [, h(t) dW/(t)
How would you define it?

- For which functions h?
- Answer is random (since W(t) is)

T n
Riemann integral / h(t) dt = Z h(t;)At;
0 i=1

n

.

&@mgmgm//mwﬂﬂzzymﬂﬂmg—ﬂm]
0 i—1

where F has finite variation :

i
—MmPMmmm/hmMM=/hMHﬂﬁ
0 0
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Integration

Stochastic Integration

Try the same:

T n
| e dwiey ~ 30 he W) - Wi

i=1

does this still work?
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Integration

Stochastic Integration

Try the same:
T n
/0 h() dW(2) = 3 h(t)) W (ti1) — W(5)]
i=1

does this still work?

W does not have finite variation
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Integration

Stochastic Integration

Try the same:

T n
| e dwiey ~ 30 he W) - Wi
i=1
does this still work?
W does not have finite variation

let max At; — 0, limit in what sense? Depends on ¢/
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Integration

Stochastic Integration

Try the same:

T n
[ ey aw(e) = 3~ )W) ~ W)
0 i=1
does this still work?
W does not have finite variation

let max At; — 0, limit in what sense? Depends on ¢/

1t Stratonovich
- u ti + tiz1
SoHEW D - W S ) W) W)
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Integration

Stochastic Integration: examples
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Stochastic Integration: examples

ST W(tiy1) — W(t;)) = W(T) of course (recall W(0) = 0)
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Integration

Stochastic Integration: examples

ST W(tiy1) — W(t;)) = W(T) of course (recall W(0) = 0)

T
/ tdW(t) =
0
> ti[W(tis1) — W(t:)] =7 to be continued
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Integration

Stochastic Integration: examples

ST W(tiy1) — W(t;)) = W(T) of course (recall W(0) = 0)

T
/ tdW(t) =
0
> ti[W(tis1) — W(t:)] =7 to be continued

so far, It6 and Stratonovich integrals agree.

However,

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Stochastic Integration and Stochastic Differential Equations: a gentle introduction



Integration

Stochastic Integration: examples

ST W(tiy1) — W(t;)) = W(T) of course (recall W(0) = 0)

T
/ tdW(t) =
0
> ti[W(tis1) — W(t:)] =7 to be continued

so far, It6 and Stratonovich integrals agree.

However,

/ W(t)dW(t)~ > W(t)[W(tiy1) — W(t)]
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Integration

Stochastic Integration: fOT W (t) dW(t)

note,
2> W(t)[W(tir1) — W(t:)]
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Integration

Stochastic Integration: fOT W (t) dW(t)

note,
25 W(t)[W(tipr) — W(t;)]
= Z Wz(t,'_H_) — W2(t,') — Z(W(ti—H) - W(ti))z
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Integration

Stochastic Integration: fOT W (t) dW(t)

note,
25 W(t)[W(tipr) — W(t;)]
= Z Wz(t,'_H_) — W2(t,') — Z(W(ti—H) - ‘/V(ti))2
— W2(T) - T

(brown part by Law of Large numbers)
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Integration

Stochastic Integration: fOT W (t) dW(t)

note,
25 W(t)[W(tipr) — W(t;)]
= Z Wz(t,'_H_) — W2(t,') — Z(W(ti—H) - W(ti))z

— W3(T)-T
(brown part by Law of Large numbers)
T W(T) T
Hence, / W(t) dW(t) = % — ()
0
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Integration

Stochastic Integration: fOT W (t) dW(t)

note,
25 W(t)[W(tipr) — W(t;)]
= Z Wz(t,'_H_) — W2(t,') — Z(W(ti—H) - W(ti))z

— W3(T)-T
(brown part by Law of Large numbers)
T W(T) T
Hence, / W(t) dW(t) = % — ()
0

Wish it were easier?
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Stochastic Differential Equations

X(t) = /O Cb(s, X(s) dW(s), t>0

4

dX(s) = b(s, X(s)) dW(s) - Stochastic differential

Full form
{ dX(s) = a(s, X(s)) ds + b(s, X(s)) dW(s),
X(0) = Xp (can be random)

(note that dW/ds does not exist)
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[t6 Formula

Let dX(t) = a(t, X(t)) dt + b(t, X(t)) dW(t)
then, the chain rule is

b?(t, X(t))

> dt - “extra" term

dg(t, X(t)) = gedt+gxdX(t) + g

heuristic: follows from Taylor series assuming (dW(t))? = dt
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for example,

d(W3(s)) = W2(s + ds) — W(s)
= [W(s + ds) + W(s)][W(s + ds) — W(s)]

= [W(s+ ds) — W(s)][W(s + ds) — W(s)]
+F2W(s)[W(s + ds) — W(s)]

=2W(s)dW(s) + ds
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for example,

d(W?(s)) = W?3(s+ ds) — W3(s)
= [W(s+ds)+ W(s)][W(s + ds) — W(s)]
= [W(s+ ds) — W(s)][W(s + ds) — W(s)]
+F2W(s)[W(s + ds) — W(s)]
=2W(s)dW(s) + ds
we)

t
Hence,/ W(s)dW(s) = L
0 2 2

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Stochastic Integration and Stochastic Differential Equations: a gentle introduction



dg(t, X(t)) = gedt + g dX(t) + gL dt

Exercise:

d(W3(s)) =?
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dg(t, X(t)) = gedt + g dX(t) + gL dt

Exercise:
d(W3(s)) =7
= 3W?2(s) dW(s) + 3W(s)ds
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dg(t, X(t)) = gedt + g dX(t) + gL dt

Exercise:
d(W3(s)) =7
= 3W?2(s) dW(s) + 3W(s)ds
t ) B W3(t) B t o) ds
therefore, /0 W<(s) dW(s) = 3 /0 W(s)d
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dg(t, X(t)) = gedt + g dX(t) + gL dt

Exercise:
d(W3(s)) =?
= 3W?2(s) dW(s) + 3W(s)ds
t 3 t
therefore, /0 W?2(s) dW(s) = W3(t) - /0 W(s) ds
d(sW(s)) =7
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dg(t, X(t)) = gedt + g dX(t) + gL dt

Exercise:
d(W3(s)) =7
= 3W?2(s) dW(s) + 3W(s)ds

t 3 t
therefore,/0 W?2(s) dW(s) = W2(t) _/0 W(s) ds

d(sW(s)) =7
= W(s)ds + s dW(s),

t t
therefore / sdW(s) = tW(t) — / W(s) ds
0 0
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Solution

What does the solution look like?

Note that for It6 integrals, we always have

t
E/ h(s)dW(s) =0 Expected value
0

t 2 t
E [/ h(s) dW(s)] = / E[h*(s)]ds  Variance
0 0
(can see using the Riemann sums).

t
For example, the result of/ sdW(s) is a Normal random

variable, with mean 0 and variance =
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Solution

What does the solution look like?

Note that for It5 integrals, we always have

t
E/ h(s)dW(s) =0 Expected value
0

t 2 t
E [/ h(s) dW(s)] = / E[h*(s)]ds  Variance
0 0
(can see using the Riemann sums).

t
For example, the result of/ sdW(s) is a Normal random
0

variable, with mean 0 and variance = t3/3
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Langevin equation

More realistic Brownian motion: resistance/friction
dX(t) = —pX(t)dt + o dW/(t)
X(t) = particle velocity

Then, can obtain using Ité formula, integrating factor et

t
X(t)=e "X + / e PE=9) qw (s)
0

Oleg Makhnin New Mexico Tech Dept. of Mathematics
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Stock price

dX(t) = rX(t) dt + o X(t) dW(t)
can express d log(X(t)) and get

X(t) =exp |(r— %2)t+aW(t)

Note that for both equations, expected value E[X(t)] coincides
with the solution of deterministic equation, here

dX(t) = rX(t)dt
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A nonlinear equation

Consider a logistic equation for population dynamics: non-linear
dX(t) = rX(t)(1 — X(t)) dt + o X(t) dW(t)
Here, deterministic solution of
dX(t) = rX(t)(1 — X(t)) dt

is different from the mean of stochastic solutions

Oleg Makhnin New Mexico Tech Dept. of Mathematics
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Applications

A nonlinear equation

dX(t) = rX(t)(1 — X(t)) dt + o X(t) dW/(t)

o |
-
e
s
=
X
v
o
o
o

0.0 0.2 0.4 0.6 0.8 1.0
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Intro Brownian motion

Integration

SDE Applications

=

 Hedge funds

| Behind the veil

Big market losses provide insightsinto a
| volatile financial world

HEY are secretive, clever and often
‘ Thighly lucrative. But the veil of mystery
| that has shrouded hedge funds was par-
. tially lifted in the past fortnight after mar-
ket turmoil left many of them with big

. losses—and anxious investors.

Among the hedge funds hardest hit
were creditfunds and those using a type of
statistical arbitrage, known as long-short
equity neutral. Stocks in these portfolios »
are picked assuming certain shares will
rise and others will fall. In this case, the
complex models that drive them were up-
ended by the extreme market volatility.
Four building-blocks of such models are
stock valuations, quality, price momen-
tum and earnings momentum. These usu-|
ally offset each other, but when they all
started suffering, the models went awry.
Some of the world’s biggest hedge funds
all began selling the same things at the
same time. “You had the proverbial camel
trying to get through the eye of the nee-

| dle,” an analyst says.
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Intro Brownian motion Integration SDE Applications

Many funds will report to their investors in
the coming weeks. Much depends on
whether the pension funds, endowments
and rich individuals investing in hedge
funds hold their nerve. The “lock-up” peri-
ods for fund investors vary. Many allow re-
demptions only monthly or quarterly. Au-
gust1sth was a big day for those who need
to give 45 days notice before redeeming
their stakes by the end of September.

The saga has damaged the image of
computer-driven funds, generally so pow-
erful that they can account for up to half of
a stock exchange’s daily trading volume.
But there is no way the clocks will be
turned back. “People aren’t going to give
up their computers and go back to insider
information and tips,” says David Har-
ding, a fund manager in London.

Itis also unclear who will gain from the
Danger. Quant at work turmoil—-and someone always takes the

Stochastic Integration and Stochastic Differential Equations: a gentle introduction



Applications

Math Finance

- Optimal control of investments
- Black-Scholes formula for option pricing

- Based on
dX(t) = rX(t) dt + o X(t) dW(t)

and beyond
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Applications

Other applications

Boundary value problems: e.g. solving a Dirichlet problem
Af = 0 (harmonic) in the region U € R"
f = g on the boundary OU, given g

a stochastic solution is

f(x) = Ex[g(point of first exit from U)],

E, refers to Brownian motion started from x.
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Other applications

Hydrology: porous media flow

div(V) =0 incompressible flow
V =—-KVP Darcy's law

V = velocity, P = pressure field
K = conductivity is stochastic
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Applications

Other applications

Hydrology: porous media flow

div(V) =0 incompressible flow
V=—-KVP Darcy's law

V = velocity, P = pressure field
K = conductivity is stochastic

Filtering: determine the position of a stochastic process from noisy
observation history. Kalman filter (discrete), Kalman-Bucy
filter (continuous)
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Intro Brownian motion Integration S Applications

Other applications

Hydrology: porous media flow

div(V) =0 incompressible flow
V=—-KVP Darcy's law

V = velocity, P = pressure field
K = conductivity is stochastic

Filtering: determine the position of a stochastic process from noisy
observation history. Kalman filter (discrete), Kalman-Bucy
filter (continuous)

Predator-prey models, Chemical reactions, Reservoir models ... ...
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Applications

QUESTIONS?
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Applications

THANK YOU!

www.nmt . edu/~“olegm/SDE/ for references
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