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Intro Brownian motion Integration SDE Applications

Intro

IDeterministic ODE {
X ′(t) = a(t,X (t)) t > 0
X (0) = X0

IHowever, noise is usually present{
X ′(t) = a(t,X (t)) + b(t,X (t))ω(t), t > 0
X (0) = X0

INatural requirements for noise ω:
- ω(t) is random with mean 0
- ω(t) is independent of ω(s), t 6= s ⇒ “White noise”
- ω is continuous

IStrictly speaking, ω does not exist!
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Intro Brownian motion Integration SDE Applications

Brownian motion
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Intuitive: “Random walk”, “Diffusion”
Stocks: you cannot predict the future behavior based on past
performance
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Intro Brownian motion Integration SDE Applications

Brownian motion
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Intro Brownian motion Integration SDE Applications

2D Brownian motion
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Intro Brownian motion Integration SDE Applications

Brownian motion: Axioms

IBM is continuous (but not smooth, see later!), W(0) = 0

INormality:
W (t+∆t)−W (t) ∼ Normal(mean = 0, variance σ2 = ∆t)
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INormal because sum of many small, independent increments.
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Intro Brownian motion Integration SDE Applications

Brownian motion: Axioms

Independence:
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Intro Brownian motion Integration SDE Applications

Fractal nature
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Intro Brownian motion Integration SDE Applications

Integration

I Need
∫ T
0 h(t) dW (t)

I How would you define it?
- For which functions h?
- Answer is random (since W (t) is)

I Riemann integral

∫ T

0
h(t) dt ≈

n∑
i=1

h(t∗i )∆ti

I Stieltjes integral

∫ T

0
h(t) dF (t) ≈

n∑
i=1

h(t∗i )[F (ti+1)− F (ti )]

where F has finite variation

- when F ′ exists, then

∫ T

0
h(t) dF (t) =

∫ T

0
h(t)F ′(t) dt
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Intro Brownian motion Integration SDE Applications

Stochastic Integration

I Try the same:∫ T

0
h(t) dW (t) ≈

n∑
i=1

h(t∗i )[W (ti+1)−W (ti )]

does this still work?

I W does not have finite variation

I let max ∆ti → 0, limit in what sense? Depends on t∗i

I

Itô

n∑
i=1

h(ti )[W (ti+1)−W (ti )]

Stratonovich

n∑
i=1

h

(
ti + ti+1

2

)
[W (ti+1)−W (ti )]

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Stochastic Integration and Stochastic Differential Equations: a gentle introduction



Intro Brownian motion Integration SDE Applications

Stochastic Integration

I Try the same:∫ T

0
h(t) dW (t) ≈

n∑
i=1

h(t∗i )[W (ti+1)−W (ti )]

does this still work?

I W does not have finite variation

I let max ∆ti → 0, limit in what sense? Depends on t∗i

I

Itô
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n∑
i=1

h(ti )[W (ti+1)−W (ti )]

Stratonovich

n∑
i=1

h

(
ti + ti+1

2

)
[W (ti+1)−W (ti )]

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Stochastic Integration and Stochastic Differential Equations: a gentle introduction



Intro Brownian motion Integration SDE Applications

Stochastic Integration

I Try the same:∫ T

0
h(t) dW (t) ≈

n∑
i=1

h(t∗i )[W (ti+1)−W (ti )]

does this still work?

I W does not have finite variation

I let max ∆ti → 0, limit in what sense? Depends on t∗i

I

Itô
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Intro Brownian motion Integration SDE Applications

Stochastic Integration: examples

I

∫ T

0
dW (t) ≈

I
∑

W (ti+1)−W (ti ) = W (T ) of course (recall W (0) = 0)

I

∫ T

0
t dW (t) ≈

I
∑

ti [W (ti+1)−W (ti )] =? to be continued

I so far, Itô and Stratonovich integrals agree.

However,

I

∫ T

0
W (t) dW (t) ≈

∑
W (ti )[W (ti+1)−W (ti )]
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I so far, Itô and Stratonovich integrals agree.

However,

I

∫ T

0
W (t) dW (t) ≈

∑
W (ti )[W (ti+1)−W (ti )]

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Stochastic Integration and Stochastic Differential Equations: a gentle introduction



Intro Brownian motion Integration SDE Applications

Stochastic Integration: examples

I

∫ T

0
dW (t) ≈

I
∑

W (ti+1)−W (ti ) = W (T ) of course (recall W (0) = 0)

I

∫ T

0
t dW (t) ≈

I
∑

ti [W (ti+1)−W (ti )] =? to be continued
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Intro Brownian motion Integration SDE Applications

Stochastic Integration:
∫ T

0 W (t) dW (t)

Inote,
2

∑
W (ti )[W (ti+1)−W (ti )]

I =
∑

W 2(ti+1)−W 2(ti ) −
∑

(W (ti+1)−W (ti ))
2

I →W 2(T )− T

(brown part by Law of Large numbers)

I Hence,

∫ T

0
W (t) dW (t) =

W 2(T )

2
− T

2
(Itô)

I Wish it were easier?
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Intro Brownian motion Integration SDE Applications

Stochastic Differential Equations

X (t) =

∫ t

0
b(s,X (s)) dW (s), t > 0

⇓
dX (s) = b(s,X (s)) dW (s) - Stochastic differential

Full form{
dX (s) = a(s,X (s)) ds + b(s,X (s)) dW (s),
X (0) = X0 (can be random)

(note that dW /ds does not exist)
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Intro Brownian motion Integration SDE Applications

Itô Formula

Let dX (t) = a(t,X (t)) dt + b(t,X (t)) dW (t)

then, the chain rule is

dg(t,X (t)) = gtdt+gxdX (t) + gxx
b2(t,X (t))

2
dt - “extra” term

heuristic: follows from Taylor series assuming (dW (t))2 = dt
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Intro Brownian motion Integration SDE Applications

Ifor example,

d(W 2(s)) = W 2(s + ds)−W 2(s)
= [W (s + ds) + W (s)][W (s + ds)−W (s)]

= [W (s + ds)−W (s)][W (s + ds)−W (s)]
+2W (s)[W (s + ds)−W (s)]

= 2W (s) dW (s) + ds

IHence,

∫ t

0
W (s) dW (s) =

W 2(t)

2
− t

2
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Intro Brownian motion Integration SDE Applications

dg(t, X (t)) = gtdt + gxdX (t) + gxx
b2

2 dt

Exercise:

I d(W 3(s)) =?

I = 3W 2(s) dW (s) + 3W (s)ds

I therefore,

∫ t

0
W 2(s) dW (s) =

W 3(t)

3
−

∫ t

0
W (s) ds

I d(sW (s)) =?

I = W (s)ds + s dW (s),

therefore

∫ t

0
s dW (s) = tW (t)−

∫ t

0
W (s) ds
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dg(t, X (t)) = gtdt + gxdX (t) + gxx
b2

2 dt

Exercise:

I d(W 3(s)) =?

I = 3W 2(s) dW (s) + 3W (s)ds

I therefore,

∫ t

0
W 2(s) dW (s) =

W 3(t)

3
−

∫ t

0
W (s) ds

I d(sW (s)) =?

I = W (s)ds + s dW (s),

therefore

∫ t

0
s dW (s) = tW (t)−

∫ t

0
W (s) ds

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Stochastic Integration and Stochastic Differential Equations: a gentle introduction



Intro Brownian motion Integration SDE Applications

Solution

What does the solution look like?

Note that for Itô integrals, we always have

E

∫ t

0
h(s) dW (s) = 0 Expected value

E

[∫ t

0
h(s) dW (s)

]2

=

∫ t

0
E [h2(s)] ds Variance

(can see using the Riemann sums).

For example, the result of

∫ t

0
s dW (s) is a Normal random

variable, with mean 0 and variance =
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Solution

What does the solution look like?

Note that for Itô integrals, we always have

E

∫ t

0
h(s) dW (s) = 0 Expected value

E

[∫ t

0
h(s) dW (s)

]2

=

∫ t

0
E [h2(s)] ds Variance

(can see using the Riemann sums).

For example, the result of

∫ t

0
s dW (s) is a Normal random

variable, with mean 0 and variance = t3/3
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Langevin equation

More realistic Brownian motion: resistance/friction

dX (t) = −βX (t)dt + σ dW (t)

X (t) = particle velocity

Then, can obtain using Itô formula, integrating factor e−βt

X (t) = e−βtX0 +

∫ t

0
e−β(t−s) dW (s)
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Stock price

dX (t) = rX (t) dt + σX (t) dW (t)

can express d log(X (t)) and get

X (t) = exp

[
(r − σ2

2
)t + σW (t)

]
Note that for both equations, expected value E [X (t)] coincides
with the solution of deterministic equation, here

dX (t) = rX (t) dt
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A nonlinear equation

Consider a logistic equation for population dynamics: non-linear

dX (t) = rX (t)(1− X (t)) dt + σX (t) dW (t)

Here, deterministic solution of

dX (t) = rX (t)(1− X (t)) dt

is different from the mean of stochastic solutions
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A nonlinear equation

dX (t) = rX (t)(1− X (t)) dt + σX (t) dW (t)
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Math Finance
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Math Finance

- Optimal control of investments

- Black-Scholes formula for option pricing

- Based on
dX (t) = rX (t) dt + σX (t) dW (t)

and beyond
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Other applications

Boundary value problems: e.g. solving a Dirichlet problem
∆f = 0 (harmonic) in the region U ∈ Rn

f = g on the boundary ∂U, given g

a stochastic solution is

f (x) = Ex [g(point of first exit from U)],

Ex refers to Brownian motion started from x .
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Other applications

IHydrology: porous media flow{
div(V ) = 0 incompressible flow
V = −K∇P Darcy’s law

V = velocity, P = pressure field
K = conductivity is stochastic

IFiltering: determine the position of a stochastic process from noisy
observation history. Kalman filter (discrete), Kalman-Bucy
filter (continuous)

IPredator-prey models, Chemical reactions, Reservoir models ... ...
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Other applications

IHydrology: porous media flow{
div(V ) = 0 incompressible flow
V = −K∇P Darcy’s law

V = velocity, P = pressure field
K = conductivity is stochastic

IFiltering: determine the position of a stochastic process from noisy
observation history. Kalman filter (discrete), Kalman-Bucy
filter (continuous)

IPredator-prey models, Chemical reactions, Reservoir models ... ...
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QUESTIONS?
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THANK YOU!

www.nmt.edu/~olegm/SDE/ for references
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