	t-GRASTA	

Robust Image Alignment

Oleg Makhnin New Mexico Tech

October 14, 2013

Intro	RASL	t-GRASTA	Results
D			

Papers

He13: Iterative Grassmannian Optimization for Robust Image Alignment (2013)

by Jun He, Dejiao Zhang, Laura Balzano, Tao Tao, see http://arxiv.org/abs/1306.0404

Peng12: *RASL: Robust Alignment via Sparse and Low-Rank Decomposition for Linearly Correlated Images* (2012)

by Yigang Peng, Arvind Ganesh, John Wright, Wenli Xu and Yi Ma

http://www.columbia.edu/~jw2966/Peng12-PAMI.pdf

Goals:	
Given several images, align them to a common template. Do it in a robust way to overcome noise, occlusions etc.	
Transformed images: $D_i \circ \tau_i$, assume they align to produce a low-rank template A . The errors E are assumed sparse.	
Relaxation: $rank(A)$ is relaxed to nuclear norm (sum of singular	

values) and $||E||_0$ is relaxed to $||E||_1$

Examples: faces (many recognition methods need to align faces first), video processing (image stabilization, tracking objects etc.)

Intro

Formulation	
Let $D = m \times n$ matrix of images (stacked as columns), $\tau =$ set of image transformations, $D \circ \tau$: aligned images, A = common template	
Peng12:	
$\min_{A,E,\tau} \ A\ _* + \lambda \ E\ _1 \text{ s.t. } D \circ \tau = A + E$	
$(\ \cdot \ _*$ is nuclear norm = sum of singular values), use of $\ E\ _1$ provides robustness (against occlusions + misaligned edges).	
He13: $\min_{U,W,E,\tau} \ E\ _1 \text{ s.t. } D \circ \tau = UW + E$	
and $U \in \mathcal{G}(d, m)$ where $\mathcal{G}(d, m)$ is Grassmann manifold:	

RASI

 $U \in \mathbb{R}^{m \times d}$ and has orthonormal columns. Dimension d is fixed.

	RASL	t-GRASTA	

Peng12 RASL algorithm

$$\min_{A,E,\tau} \|A\|_* + \lambda \|E\|_1 \quad \text{ s.t. } D \circ \tau = A + E$$

is a nonlinear problem: $D\circ\tau$ is nonlinear even though τ 's are affine.

Solution: iterative linearization.

 $D \circ (\tau + \Delta \tau) \approx D \circ \tau + \sum_{i=1}^{n} J_i \Delta \tau_i \varepsilon_i^T$, J_i is Jacobian of *i*th image w.r.t. transformation τ_i and $\{\varepsilon_i\}$ is the standard basis for \mathbb{R}^n .

Here, τ_i are assumed to belong to some group \mathbb{G} described by p parameters (e.g. $\mathbb{G} = SE(2)$ (translations + rotations), GL(3) etc), J_i is then $m \times p$, $\tau = \text{Stack}(\tau_i, i = 1, ..., n)$.

Solve iteratively: given τ ,

$$\min_{A,E,\Delta\tau} \|A\|_* + \lambda \|E\|_1 \quad \text{s.t.} \quad D \circ \tau + \sum_{i=1}^n J_i \Delta \tau_i \varepsilon_i^T = A + E \quad (1)$$

is a convex problem, then set $\tau_{\texttt{new}} = \tau + \Delta \tau$.

(1) is solved using Augmented Lagrange Multiplier (ALM) Method. Let $h = D \circ \tau + \sum_{i=1}^{n} J_i \Delta \tau_i \varepsilon_i^T - A - E$. Then

$$\mathcal{L}_{\mu} := \|A\|_{*} + \lambda \|E\|_{1} + \langle Y, h(A, E, \Delta \tau) \rangle + \frac{\mu}{2} \|h(A, E, \Delta \tau)\|_{F}^{2}$$

where Y is Lagrange Multiplier matrix and μ_k is an increasing sequence.

Note: $\langle X, Y \rangle = tr(X^T Y)$ and $\|\cdot\|_F$ is Frobenius norm

RASL	t-GRASTA	

Then iterate

$$(A_{k+1}, E_{k+1}, \Delta \tau_{k+1}) = \arg \min_{A, E, \Delta \tau} \mathcal{L}_{\mu_k}(A, E, \Delta \tau, Y_k)$$

$$Y_{k+1} = Y_k + \mu_k h(A_{k+1}, E_{k+1}, \Delta \tau_{k+1})$$

 $\min_{A,E,\Delta\tau}$ is done by alternating minimization w.r.t. A, E or $\Delta\tau$, using SVD with soft thresholding (shrinkage). Three levels of iteration in all. Parameter λ is set to $1/\sqrt{m}$.

A MATLAB implementation is available, takes about 3 minutes on a 2.8 GHz Macbook Pro for 100 images, each 80×60 .

He13 t-GRASTA algorithm

 $\label{eq:GRASTA} t-GRASTA = "transformed Grassmannian Robust Adaptive Subspace Tracking Algorithm"$

Batch mode:

l

$$\min_{J,W,E,\tau} \|E\|_1 \quad \text{ s.t. } D \circ \tau = UW + E$$

is done image-wise i = 1, ..., n, with linearization

$$\min_{w_i,e,\Delta\tau_i} \|e\|_1 \quad \text{ s.t. } D_i \circ \tau_i + J_i \Delta\tau_i = Uw_i + e$$

interpret U as the subspace of features and w_i are weights.

Solution also involves augmented Lagrangian

$$\mathcal{L}(U, w, e, \Delta\tau, y) = \|e\|_1 + y^T h(w, e, \Delta\tau) + \frac{\mu}{2} \|h(w, e, \Delta\tau)\|_2^2,$$

 $h = Uw + e - D_i \circ \tau_i - J_i \Delta \tau_i$, solved by alternating minimization...

RASL	t-GRASTA	

...except for U:

 ${\it U}$ is updated in moves taking into account the geometry of Grassmannian.

$$\frac{d\mathcal{L}}{dU} = (\lambda + \mu h(w, e, \Delta \tau))w^{T}$$

Then the gradient step along the geodesic in direction of $\nabla \mathcal{L} = (I - UU^T) \frac{d\mathcal{L}}{dU} =: \Gamma w^T$, which simplifies to

$$U(\eta) = U + (\cos(\eta\sigma) - 1)\frac{Uww^{T}}{\|w\|_{2}^{2}} - \sin(\eta\sigma)\frac{\Gamma w^{T}}{\|\Gamma\|\|w\|}$$

 $(\eta = \text{step size}, \sigma := \|\Gamma\| \|w\|$ is the sole non-singular value of $\nabla \mathcal{L}$), these steps are iterated with $w = w_i$, for each image *i* in turn.

t-GRASTA online mode:

Locally iterative subspace update

A "battery" of subspaces U^{ℓ} , $\ell = 1, ..., L$ updated sequentially (exploits similarity between consecutive video images I_i , I_{i+1})

RASL example: windows

Original images (left)

Aligned images $D \circ \tau$ (right)

Low-rank component A (left) Sparse error E (right)

t-GRASTA vs RASL comparison

(a) (b) (c) (d) (e)
(a) average of initial misaligned images; (b) average of images aligned by t-GRASTA; (c) average of background recovered by t-GRASTA; (d) average of images aligned by RASL; (e) average of background recovered by RASL.

Video (online t-GRASTA)

Row 1: original Row 2: aligned Row 3: low-rank component Row 4: residual

	t-GRASTA	Results

Conclusions

*Both methods work well if the images are not too misaligned (e.g. misalignment angle up to 40°). I suspect that having large patches of the same texture helps the algorithms (as they use linear approx. of the transformed image).

* t-GRASTA is claimed about 4 times faster and takes less memory

Desirable extensions:

- * non-linear/non-parametric transformations au
- * tracking multiple objects in video