Modeling multivariate data: from precipitation to finance

Oleg Makhnin New Mexico Tech Dept. of Mathematics

March 28, 2008

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Abstract:

This talk will outline my ongoing and future planned projects, discussing possibilities for students' research. Two examples: spatial random field modeling (based on the MS work with Anandkumar Shetiya), and a future project with stochastic volatility modeling.

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Multivariate problems

• Multiple variables are observed $Y^{(1)}, Y^{(2)}, \dots$

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Multivariate problems

- Multiple variables are observed $Y^{(1)}, Y^{(2)}, ...$
- Each variable j is observed in time, that is $Y_1^{(j)}, Y_2^{(j)}, Y_3^{(j)}, \dots$

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Multivariate problems

- Multiple variables are observed $Y^{(1)}, Y^{(2)}, ...$
- Each variable j is observed in time, that is $Y_1^{(j)}, Y_2^{(j)}, Y_3^{(j)}, \dots$
- Have to deal with dependencies across time, as long as dependencies between the variables.

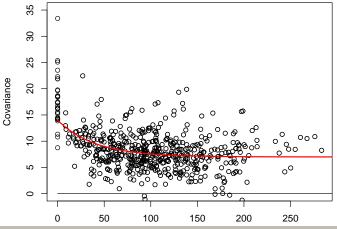
Oleg Makhnin New Mexico Tech Dept. of Mathematics

Multivariate problems

- Multiple variables are observed $Y^{(1)}, Y^{(2)}, ...$
- Each variable j is observed in time, that is $Y_1^{(j)}, Y_2^{(j)}, Y_3^{(j)}, ...$
- Have to deal with dependencies across time, as long as dependencies between the variables.
- Examples: precipitation measurements at gauge j, asset prices (asset = j, time = t discretized)

Consider purely spatial dependency in precipitation.

Typically, if we plot covariance of precipitation measurements versus distance we observe something like this



Oleg Makhnin New Mexico Tech Dept. of Mathematics

Modeling spatial dependency

Need to model the dependency of $cov(Y^{(i)}, Y^{(j)})$ on the distance.

• Traditional geostatistical methods based on variogram modeling: basically, model some function ϕ ,

$$cov(Y^{(i)}, Y^{(j)}) = \phi(\mathbf{r}_i - \mathbf{r}_j)$$

 \mathbf{r}_j is the location of gauge j

(Math 586, Spring '09)

Modeling spatial dependency

Need to model the dependency of $cov(Y^{(i)}, Y^{(j)})$ on the distance.

• Traditional geostatistical methods based on variogram modeling: basically, model some function ϕ ,

$$cov(Y^{(i)}, Y^{(j)}) = \phi(\mathbf{r}_i - \mathbf{r}_j)$$

 \mathbf{r}_j is the location of gauge j

(Math 586, Spring '09)

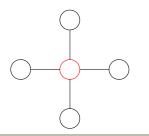
• Convolution of GMRF's (Gaussian Markov random fields), which are easier to deal with computationally.

GMRF: Some basics

Markov field: (extension from 1-dim concept of Markov chain) possesses *Markov property*

$$P(X(\mathbf{s}_i)| \text{ rest of } X) = P(X(\mathbf{s}_i)|\{X(\mathbf{s}_j), j \sim i\})$$

i.e. the value at the location *i* depends only on the values at *neighboring* locations $j \sim i$. E.g. rectangular grid neighbors



Oleg Makhnin New Mexico Tech Dept. of Mathematics

GMRF: Some basics

Gaussian vector $\mathbf{x} = \{X(s_j), j = 1, ..., m\}$ is determined by its prior distribution

$$p(\mathbf{x}) \propto \exp(-\lambda_x \, \mathbf{x}^T \, V \, \mathbf{x}) \tag{1}$$

with precision matrix V defined by

$$V_{ij} = \left\{ egin{array}{ccc} -1, & i \sim j \ & number ext{ of neighbors of } i, & i = j \ & 0, & ext{ otherwise } \end{array}
ight.$$

and λ_x is the smoothness parameter. Advantage: matrix V is sparse.

Oleg Makhnin New Mexico Tech Dept. of Mathematics

GMRF: convolution

However, the gauges are not on a regular grid!

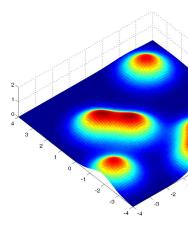
To fill in the values, use $\ensuremath{\textit{convolutions}},$ at location $\ensuremath{\textbf{s}}$

$$ilde{X}(\mathbf{s}) = \sum_{j} X(\mathbf{s}_{j}) \psi(\mathbf{s} - \mathbf{s}_{j})$$

where ψ is some kernel function, say Gaussian

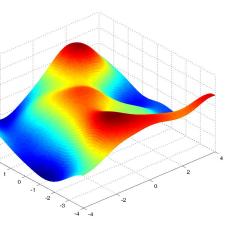
$$\psi(\mathbf{s}) = \exp(-\mathbf{s}^{\mathsf{T}}\mathbf{s}/2\sigma_{\psi}^2),$$

and σ_ψ can be taken equal to the grid spacing.



Oleg Makhnin New Mexico Tech Dept. of Mathematics

GMRF: convolution



Finally, our observations

$$Y(\mathbf{s}) = \sum_{j \in \text{ grid}} X(\mathbf{s}_j) \psi(\mathbf{s}-\mathbf{s}_j) + e(\mathbf{s})$$
(2)
where *e* are white-noise (i.i.d.)
errors

Oleg Makhnin New Mexico Tech Dept. of Mathematics

GMRF: estimation

Inverse problem: we need to estimate the unknown $\mathbf{x} = \{X(s_j)\}$, and other parameters $= \theta$, using the data.

Oleg Makhnin New Mexico Tech Dept. of Mathematics

GMRF: estimation

Inverse problem: we need to estimate the unknown
x = {X(s_j)}, and other parameters = θ, using the data.
Handy tool for inverting: Bayesian approach.
Given p(x, θ)= prior, and p(y|x, θ) = likelihood, our goal is to compute

Posterior: $p(\mathbf{x}, \theta | \mathbf{y}) \propto \text{prior} \cdot \text{likelihood}$

for the process X and other parameters of interest (like σ_e).

Dleg Makhnin New Mexico Tech Dept. of Mathematics

GMRF: estimation

Inverse problem: we need to estimate the unknown
x = {X(s_j)}, and other parameters = θ, using the data.
Handy tool for inverting: Bayesian approach.
Given p(x, θ)= prior, and p(y|x, θ) = likelihood, our goal is to compute

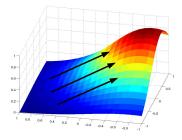
Posterior: $p(\mathbf{x}, \theta | \mathbf{y}) \propto \text{prior} \cdot \text{likelihood}$

for the process X and other parameters of interest (like σ_e).

Computational tools: Gibbs sampler. End up with a Markov Chain Monte Carlo (MCMC) sample.

MFD random field

Effects of terrain: MFD (moisture flux direction) Increased precipitation when moisture is moving upslope.



Compute another random field W

that helps in improving the prediction.

W is directional, i.e. its values are between 0 and 2π

MFD random field: prior

Try to follow the convolution approach.

Let vector W = the values of MFD at the grid points. We set a prior on W that encourages it to be smooth:

$$p(W) \propto \exp\left[\gamma \sum_{i \sim j} \cos(W_i - W_j)
ight]$$

The values of W that are close (in circular topology) will receive a high prior weight, and diametrically opposite values of W receive a low prior weight.

 $\gamma \geq$ 0 is a smoothness parameter.

MFD random field: convolution

To find W co-located with the data Y, follow the convolution

$$ilde{W}(\mathbf{s}) = \sum_{j \in ext{ grid}} \psi(\mathbf{s} - \mathbf{s}_j) W_j$$

however the sum taken above is understood in the circular topology, that is, through weighted averages

$$\sin(ilde{W}(\mathbf{s})) = rac{\sum_j \psi(\mathbf{s} - \mathbf{s}_j) \sin(W_j)}{\sum_j \psi(\mathbf{s} - \mathbf{s}_j)}, \quad \cos(ilde{W}(\mathbf{s})) = ...$$

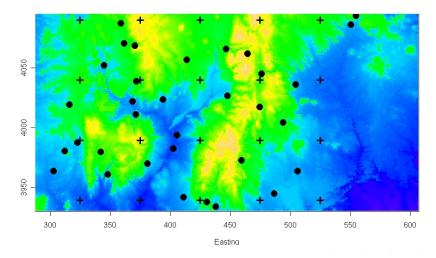
The overall model becomes

$$Y(\mathbf{s}) = \sum_{j} X(\mathbf{s}_{j})\psi(\mathbf{s} - \mathbf{s}_{j}) + \beta \cos(\tilde{W}(\mathbf{s}) - A(\mathbf{s})) + e(\mathbf{s})$$
(3)

 $A(\mathbf{s}) =$ terrain aspect at location \mathbf{s}

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Study area



Oleg Makhnin New Mexico Tech Dept. of Mathematics

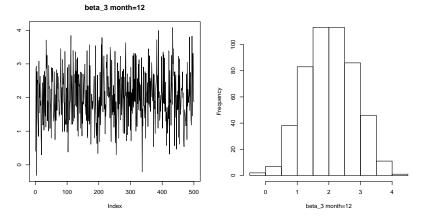
Study area: aspects

R R 个

Oleg Makhnin New Mexico Tech Dept. of Mathematics

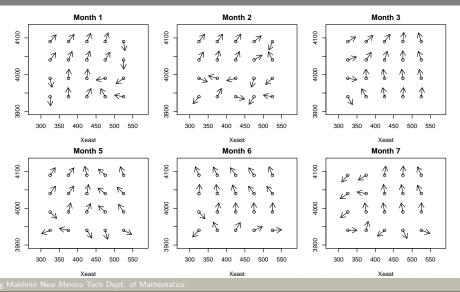
Output: β

This shows a typical MCMC output for the posterior distribution of β .

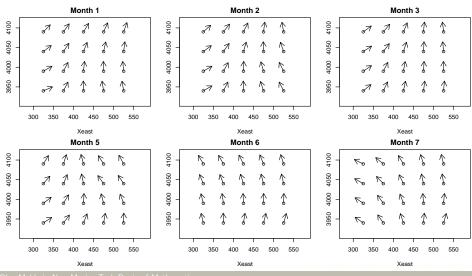


Oleg Makhnin New Mexico Tech Dept. of Mathematics

Fitted MFD, $\gamma = 2$



Fitted MFD, $\gamma = 5$



Oleg Makhnin New Mexico Tech Dept. of Mathematics

Modeling financial data

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Asset price model

Model the asset price X_t as a random walk

$$X_t = X_{t-1} + e_t$$

 $\{e_t\}$ are independent However, they are not identically distributed:

 $e_t \sim Normal(0, \sigma_t)$

where $\sigma_t =$ "volatility" is itself time-varying; and it is predictable to some extent.

Stochastic volatility

Stochastic volatility model

This is an autoregressive model

$$log(\sigma_t) = \mu + r(log(\sigma_{t-1}) - \mu) + \nu_t$$

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Stochastic volatility

Stochastic volatility model

This is an autoregressive model

$$log(\sigma_t) = \mu + r(log(\sigma_{t-1}) - \mu) + \nu_t$$

Research question: for different assets j, does the clustering of $\sigma_t^{(j)}$ take place? That is, if we look at multiple assets, do they form the groups within which $\sigma_t^{(j)}$ behave alike?

Oleg Makhnin New Mexico Tech Dept. of Mathematics

Dleg Makhnin New Mexico Tech Dept. of Mathematics

Multivariate Normal distribution

Oleg Makhnin New Mexico Tech Dept. of Mathematics

- Multivariate Normal distribution
- Time-series approaches, autocorrelation, autoregression etc.

Oleg Makhnin New Mexico Tech Dept. of Mathematics

- Multivariate Normal distribution
- Time-series approaches, autocorrelation, autoregression etc.
- Bayesian inference, computational methods (Markov Chain Monte Carlo)

Oleg Makhnin New Mexico Tech Dept. of Mathematics

QUESTIONS?

Oleg Makhnin New Mexico Tech Dept. of Mathematics

THANK YOU!

Oleg Makhnin New Mexico Tech Dept. of Mathematics