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Intro

Abstract:

This talk will outline my ongoing and future planned projects,
discussing possibilities for students’ research. Two examples:
spatial random field modeling (based on the MS work with
Anandkumar Shetiya), and a future project with stochastic
volatility modeling.
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Multivariate problems

Multiple variables are observed Y1), Y(2) .

Each variable j is observed in time, that is Y/, ) v
Have to deal with dependencies across time, as long as
dependencies between the variables.

Examples: precipitation measurements at gauge j, asset prices
(asset = j, time = t discretized)
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Intro Precipitation

Consider purely spatial dependency in precipitation.

Typically, if we plot covariance of precipitation measurements
versus distance we observe something like this
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Precipitation Finance

Modeling spatial dependency

Need to model the dependency of cov(Y(), YU)) on the distance.

e Traditional geostatistical methods based on variogram
modeling: basically, model some function ¢,

cov(Y, YU)) = ¢(r; — 1))
rj is the location of gauge j
(Math 586, Spring '09)

e Convolution of GMRF's (Gaussian Markov random fields),
which are easier to deal with computationally.
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Precipitation

GMRF: Some basics

Markov field: (extension from 1-dim concept of Markov chain)
possesses Markov property

P(X(si)| rest of X) = P(X(s;)|{X(sj),j ~i})

i.e. the value at the location i depends only on the values at
neighboring locations j ~ j. E.g. rectangular grid neighbors
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Precipitation

GMRF: Some basics

Gaussian vector x = {X(s;),j = 1,..., m} is determined by its prior
distribution
p(x) o exp(—AxxT Vx) (1)

with precision matrix V' defined by

-1, i~
Vij = { number of neighbors of i, i=j
0, otherwise

and A\, is the smoothness parameter.
Advantage: matrix V is sparse.
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Intro Precipitation Finance

GMREF: convolution

However, the gauges are not on a regular grid!

To fill in the values, use convolutions,
at location s

K(9) = > X(s)u(s )

where ¢ is some kernel function, say
Gaussian

W(s) = exp(—s"s/203),

and oy, can be taken equal to the grid
spacing.
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Precipitation

GMRF: convolution

Finally, our observations

Y(s)= Y X(sj)i(s—sj)+e(s)
je grid
(2)

where e are white-noise (i.i.d.)
errors
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Intro Precipitation Finance

GMRF: estimation

Inverse problem: we need to estimate the unknown
x = {X(sj)}, and other parameters = 6, using the data.

Handy tool for inverting: Bayesian approach.
Given p(x, 8)= prior, and p(y|x, 8) = likelihood, our goal is to
compute

Posterior: p(x,0|y) x prior - likelihood
for the process X and other parameters of interest (like o).

Computational tools: Gibbs sampler.
End up with a Markov Chain Monte Carlo (MCMC) sample.
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Intro Precipitation Finance

MFD random field

Effects of terrain: MFD (moisture flux direction)
Increased precipitation when moisture is moving upslope.
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Compute another random field W
that helps in improving the prediction.

W is directional, i.e. its values are between 0 and 27
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Intro Precipitation Finance

MFD random field: prior

Try to follow the convolution approach.

Let vector W = the values of MFD at the grid points.
We set a prior on W that encourages it to be smooth:

p(W) ox exp |7 3 cos(Ws — W)

in~j

The values of W that are close (in circular topology) will receive a
high prior weight, and diametrically opposite values of W receive a
low prior weight.

~v > 0 is a smoothness parameter.
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Precipitation Finance

MFD random field: convolution

To find W co-located with the data Y/, follow the convolution
W(s) =9 (s—s)W,
je grid
however the sum taken above is understood in the circular
topology, that is, through weighted averages

S B >_j (s — sj)sin(W)) cos(W/(s)) —
sin(W(s)) = Si-s) (W(s)) = ...

The overall model becomes

Y(s) = ZX(sj)w(s —s;) + Fcos(W(s) — A(s)) +e(s)  (3)

A(s) = terrain aspect at location s
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Intro Precipitation Finance

Study area
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Intro Precipitation Finance

Study area: aspects

T < 1

S R
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Intro Precipitation

This shows a typical MCMC output for the posterior distribution of
g.
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Fitted MFD, v = 2

Oleg Makhnin

Mod

4000

3900

4000 4100

3900

Precipitation

Month 1 Month 2 Month 3
ﬂﬂ?‘?‘ll A AN A 7 a7 MA
ﬂ?‘?ﬁ$ A AN A
A,/I\Té’z' N g JRE/ N N Y
w¢“€‘ ozﬂ,glle. ) NN&TT

Vonth s Vonth & onth 7
A 72NN N E§1 NARNNKNAN 8 , . 10N
A2 PMPSN N PN NN L < MAN
A A S - I A g1 , v

300 350 400 450 500 550

Xeast
New Mexico Tech Dept. of Mathematics

iate data: from prec

300 350 400 450 500 550

Xeast

tation to finance

300 350 400 450 500 550

Xeast




Fitted MFD, = 5
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Finance

Modeling financial data
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Finance

Asset price model

Dow

Model the asset price X; as a random P —

walk 12200 M
12100

Xt = Xt—l + €t 12000 @il 1

10am  12pm  Zpm  4pm

{et} are independent
However, they are not identically distributed:

et ~ Normal(0, o)

where o, = ‘volatility” is itself time-varying; and it is predictable
to some extent.
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Finance

Stochastic volatility

Stochastic volatility model

This is an autoregressive model

log(at) = 1+ r(log(o—1) — 1) + vt

Research question: for different assets j, does the clustering of atU)
take place?
That is, if we look at multiple assets, do they form the groups

()

within which o’ behave alike?
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Finance

Tools

Multivariate Normal distribution
Time-series approaches, autocorrelation, autoregression etc.

Bayesian inference, computational methods (Markov Chain
Monte Carlo)
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Finance

QUESTIONS?
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Finance

THANK YOU!

www.nmt .edu/"olegm/talks/Multivar/
for pdf file
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