Modeling multivariate data: from precipitation to finance

Oleg Makhnin
New Mexico Tech
Dept. of Mathematics

March 28, 2008

Abstract:

This talk will outline my ongoing and future planned projects, discussing possibilities for students' research. Two examples: spatial random field modeling (based on the MS work with Anandkumar Shetiya), and a future project with stochastic volatility modeling.

Multivariate problems

Multiple variables are observed $Y^{(1)}, Y^{(2)}, \ldots$
Each variable j is observed in time, that is $Y_{1}^{(j)}, Y_{2}^{(j)}, Y_{3}^{(j)}, \ldots$
Have to deal with dependencies across time, as long as dependencies between the variables.
Examples: precipitation measurements at gauge j, asset prices (asset $=j$, time $=t$ discretized)

Consider purely spatial dependency in precipitation.
Typically, if we plot covariance of precipitation measurements versus distance we observe something like this

Modeling spatial dependency

Need to model the dependency of $\operatorname{cov}\left(Y^{(i)}, Y^{(j)}\right)$ on the distance.

- Traditional geostatistical methods based on variogram modeling: basically, model some function ϕ,

$$
\operatorname{cov}\left(Y^{(i)}, Y^{(j)}\right)=\phi\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

\mathbf{r}_{j} is the location of gauge j
(Math 586, Spring '09)

- Convolution of GMRF's (Gaussian Markov random fields), which are easier to deal with computationally.

GMRF: Some basics

Markov field: (extension from 1-dim concept of Markov chain) possesses Markov property

$$
P\left(X\left(\mathbf{s}_{i}\right) \mid \text { rest of } X\right)=P\left(X\left(\mathbf{s}_{i}\right) \mid\left\{X\left(\mathbf{s}_{j}\right), j \sim i\right\}\right)
$$

i.e. the value at the location i depends only on the values at neighboring locations $j \sim i$. E.g. rectangular grid neighbors

GMRF: Some basics

Gaussian vector $\mathbf{x}=\left\{X\left(s_{j}\right), j=1, \ldots, m\right\}$ is determined by its prior distribution

$$
\begin{equation*}
p(\mathbf{x}) \propto \exp \left(-\lambda_{x} \mathbf{x}^{T} V \mathbf{x}\right) \tag{1}
\end{equation*}
$$

with precision matrix V defined by

$$
V_{i j}=\left\{\begin{array}{cc}
-1, & i \sim j \\
\text { number of neighbors of } i, & i=j \\
0, & \\
\text { otherwise }
\end{array}\right.
$$

and λ_{x} is the smoothness parameter. Advantage: matrix V is sparse.

GMRF: convolution

However, the gauges are not on a regular grid!

To fill in the values, use convolutions, at location s

$$
\tilde{X}(\mathbf{s})=\sum_{j} X\left(\mathbf{s}_{j}\right) \psi\left(\mathbf{s}-\mathbf{s}_{j}\right)
$$

where ψ is some kernel function, say Gaussian

$$
\psi(\mathbf{s})=\exp \left(-\mathbf{s}^{T} \mathbf{s} / 2 \sigma_{\psi}^{2}\right)
$$

and σ_{ψ} can be taken equal to the grid spacing.

GMRF: convolution

Finally, our observations

$$
Y(\mathbf{s})=\sum_{j \in \operatorname{grid}} X\left(\mathbf{s}_{j}\right) \psi\left(\mathbf{s}-\mathbf{s}_{j}\right)+e(\mathbf{s})
$$

(2)
where e are white-noise (i.i.d.)
errors

Modeling multivariate data: from precipitation to finance

GMRF: estimation

Inverse problem: we need to estimate the unknown
$\mathbf{x}=\left\{X\left(s_{j}\right)\right\}$, and other parameters $=\theta$, using the data.
Handy tool for inverting: Bayesian approach.
Given $p(\mathbf{x}, \theta)=$ prior, and $p(\mathbf{y} \mid \mathbf{x}, \theta)=$ likelihood, our goal is to compute

$$
\text { Posterior: } \quad p(\mathbf{x}, \theta \mid \mathbf{y}) \propto \text { prior } \cdot \text { likelihood }
$$

for the process X and other parameters of interest (like σ_{e}).
Computational tools: Gibbs sampler.
End up with a Markov Chain Monte Carlo (MCMC) sample.

MFD random field

Effects of terrain: MFD (moisture flux direction) Increased precipitation when moisture is moving upslope.

Compute another random field W
that helps in improving the prediction.
W is directional, i.e. its values are between 0 and 2π

MFD random field: prior

Try to follow the convolution approach.
Let vector $W=$ the values of MFD at the grid points. We set a prior on W that encourages it to be smooth:

$$
p(W) \propto \exp \left[\gamma \sum_{i \sim j} \cos \left(W_{i}-W_{j}\right)\right]
$$

The values of W that are close (in circular topology) will receive a high prior weight, and diametrically opposite values of W receive a low prior weight.
$\gamma \geq 0$ is a smoothness parameter.

MFD random field: convolution

To find W co-located with the data Y, follow the convolution

$$
\tilde{W}(\mathbf{s})=\sum_{j \in \operatorname{grid}} \psi\left(\mathbf{s}-\mathbf{s}_{j}\right) W_{j}
$$

however the sum taken above is understood in the circular topology, that is, through weighted averages

$$
\sin (\tilde{W}(\mathbf{s}))=\frac{\sum_{j} \psi\left(\mathbf{s}-\mathbf{s}_{j}\right) \sin \left(W_{j}\right)}{\sum_{j} \psi\left(\mathbf{s}-\mathbf{s}_{j}\right)}, \quad \cos (\tilde{W}(\mathbf{s}))=\ldots
$$

The overall model becomes

$$
\begin{equation*}
Y(\mathbf{s})=\sum_{j} X\left(\mathbf{s}_{j}\right) \psi\left(\mathbf{s}-\mathbf{s}_{j}\right)+\beta \cos (\tilde{W}(\mathbf{s})-A(\mathbf{s}))+e(\mathbf{s}) \tag{3}
\end{equation*}
$$

$A(\mathbf{s})=$ terrain aspect at location \mathbf{s}

Study area

 .

 Precipitation \qquad
-
\square
\square

Study area: aspects

$$
\begin{aligned}
& \rightarrow \rightarrow \uparrow \uparrow \rightarrow \rightarrow \kappa \uparrow \rightarrow y^{\uparrow} \leftarrow \pi \uparrow \pi \\
& \rightarrow y \nLeftarrow \rightarrow \rightarrow \kappa \uparrow \pi \lambda \rightarrow \leftarrow \leftarrow \kappa \pi \uparrow \rightarrow \\
& \rightarrow \lambda \uparrow \uparrow \uparrow \rightarrow \uparrow \uparrow \pi \rightarrow \hbar \leftarrow \leftarrow<\pi \rightarrow \pi
\end{aligned}
$$

$$
\begin{aligned}
& <\lambda \rightarrow \uparrow \rightarrow \pi \leftarrow \downarrow \rightarrow \uparrow \leftarrow<\pi \uparrow \pi \leftarrow \leftarrow \uparrow \\
& \uparrow \rightarrow \uparrow \uparrow \uparrow \rightarrow \rightarrow \uparrow \pi \kappa \uparrow \downarrow<\pi \uparrow
\end{aligned}
$$

Output: β

This shows a typical MCMC output for the posterior distribution of β.
beta_3 month=12

Oleg Makhnin New Mexico Tech Dept. of Mathematics
Modeling multivariate data: from precipitation to finance

Fitted MFD, $\gamma=2$

Month 2

Month 6

Xeast

Month 3

Month 7

Fitted MFD, $\gamma=5$

Month 5

Month 2

Month 6

Month 3

Month 7

Oleg Makhnin New Mexico Tech Dept. of Mathematics
Modeling multivariate data: from precipitation to finance

Modeling financial data

Asset price model

Dow
Model the asset price X_{t} as a random walk

$$
X_{t}=X_{t-1}+e_{t}
$$

$\left\{e_{t}\right\}$ are independent However, they are not identically distributed:

$$
e_{t} \sim \operatorname{Normal}\left(0, \sigma_{t}\right)
$$

where $\sigma_{t}=$ "volatility" is itself time-varying; and it is predictable to some extent.

Stochastic volatility

Stochastic volatility model

This is an autoregressive model

$$
\log \left(\sigma_{t}\right)=\mu+r\left(\log \left(\sigma_{t-1}\right)-\mu\right)+\nu_{t}
$$

Research question: for different assets j, does the clustering of $\sigma_{t}^{(j)}$ take place?
That is, if we look at multiple assets, do they form the groups within which $\sigma_{t}^{(j)}$ behave alike?

Tools

Multivariate Normal distribution
Time-series approaches, autocorrelation, autoregression etc. Bayesian inference, computational methods (Markov Chain Monte Carlo)

QUESTIONS?

THANK YOU!

www.nmt.edu/~olegm/talks/Multivar/ for pdf file

