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Abstract:

A time-varying regression model is considered, based on monthly
precipitation data from gauge measurements. The model accounts
for orographic effects, that is elevation and aspect of the terrain.
The study area is NCDC climate division 2 in a mountainous area
in northern New Mexico. We assess spatio-temporal variability and
also trace the dependence of precipitation on El Niño/Southern
Oscillation (ENSO) index.
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Introduction

In many studies (see, e.g. Gershunov and Barnett (1998)), a
question was raised of teleconnections of ENSO (El Niño/Southern
Oscillation) with precipitation in Southwestern US. In Guan,
Vivoni and Wilson (2005), an instant of such teleconnection was
reported.

In particular, they looked at three categories of years (ENSO High,
Low and Neutral) and observed, for example, a positive
precipitation anomaly for High and Neutral ENSO in the winter.

A question was also raised about the relationship of precipitation
to PDO (Pacific Decadal Oscillation). However, at the time scales
for the PDO (decades) we don’t have enough data to reliably assess
this relationship.
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This work attempts to assess ENSO influence on a more statistical
footing by capturing the spatiotemporal variability of precipitation
in the mountainous region in northern New Mexico. The region is
chosen because it has a great impact on the water supply in the
state of New Mexico. Also, mountainous terrain affects
precipitation in a certain way.

The study region corresponding to New Mexico NCDC climate
Division 2 is shown below. The NCDC rain gauges provide direct
measurement of precipitation over various locations in the area. We
picked 33 stations for which mostly uninterrupted records are
available from 1970 to 2003. The data are total monthly
precipitation measurements at these stations.
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1 Model

We fit time-varying regressions to the square-root transformed
values of precipitation Pjt for Station j and Month t:

Pjt = βt
0 + βt

1Ej + βt
2Nj + βt

3Zj + βt
4cos(Aj) +

+βt
5sin(Aj) + Smod(t,12) + βSOILt + τt + εjt,

j = 1, ..., N, t = 1, ..., T (1)

• Ej and Nj : easting and northing coordinates of a station

• Zj is the elevation of a station

• Smod(t,12) are seasonal corrections (January through December,
constant for each month throughout the study period)

• Lt = SOI (Southern Oscillation Index, reported at
http://www.bom.gov.au/climate/current/soihtm1.shtml),
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a proxy for ENSO.

• The terms β4 cos(Aj) and β5 sin(Aj) account for the “moisture
flux direction” (MFD) effect (Guan, Wilson and Makhnin
(2005)). They provide auto-search for the MFD W with

β4 cos(Aj) + β5 sin(Aj) = βMFD cos(Aj −W ) (2)

The term βMFD cos(Aj −W ) captures interaction of the MFD
with the terrain aspect Aj , which is the gradient direction of
the terrain at station j, averaged in a 5km window. When the
moisture is coming up slope (the directions of Aj and W

coincide), this results in extra precipitation. The term W

inferred in our model is a statistical average over potentially
many precipitation events.

In Anandkumar (2005), the random field W (·) was introduced,
varying over the region. However, for our purposes, the region
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is fairly small, therefore we assume here that W is constant,
and the relation (2) is used instead. However, for larger
regions, working with the random field MFD will be critical.

The terms with β1 and β2 account for linear Moisture Gradient
(MG) throughout the region. It does not necessarily coincide
with MFD.

The terms τt are random effects for the month t, and εjt are
residual errors (possibly correlated).

Instead of actual precipitation measurement we have used
square-root transformed precipitation Pjt. It is a popular
choice of transformation and attains near normality of the
transformed values. The covariates E,N, Z are coded; that is,
they are scaled to have mean 0. This helps eliminate unwanted
correlations between regression coefficients.

9



'

&

$

%

1.1 Time-varying regression coefficients

The coefficients βt
k, k = 0, 1, ..., 5 depend on t. However, we

allow for some degree of smoothing by introducing the
autoregressive evolution equations, for each k:

βt+1
k = µk + rk(βt

k − µk) + ∆βt
k t = 1, ..., T − 1 (3)

(note that βSOI is not time-varying).
The increments ∆βt

k are assumed to be N (0, q2
k) with

additional variance parameters q2
k, k = 0, ..., 5.

Note that r0 = 1 and µ0 = 0, for identifiability purposes. This
way, the mean precipitation value for the entire region for a
given month t is split into a slow-varying component βt

0 and a
random perturbation τt.
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1.2 Other parameters

The seasonals Smod(t,12) can be thought of as average of the Pjt

values. For example, S5 is the average for all May values (all
Stations).

The residuals εjt are assumed to be temporally independent. It
is well known that the spatial dependence exists (e.g. Guan,
Wilson and Makhnin (2005)). We describe spatial dependence
for εjt based on exponential covariance model

Cov(εit, εjt) = σ2[exp(−dist(i, j)/φ) + w2]

where dist(i, j) is the Euclidean distance between stations i

and j. Currently we fit the values of the range φ = 30 km and
relative nugget w2 = 1/3. Later we will introduce the
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estimation of φ,w2 into the MCMC sampler.

Some data were missing. In the MCMC framework, it is
straightforward to impute the missing data using full
conditional posteriors, through equation (1).

2 MCMC fit

The parameters in the model are fitted using Markov Chain
Monte Carlo approach. It is implemented via Gibbs sampler.
The full conditional posteriors (FCP) for the parameters are
indicated below.

The FCP for the entire block of
{βk

t }, t = 1, ..., T, k = 0, ..., 5, given all the other
parameters from equations (1) and (3), can be computed using
forward-filtering backward-sampling (FFBS) approach
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described in West and Harrison (1997).

The variance parameters q2
k are fitted using inverse chi-square

(conjugate) prior with the location parameter ζk and νk

degrees of freedom, similarly to Kim et al. (1998). Then, the
FCP distribution of q2

k is inverse chi-square with the location

parameter
(
ζk +

∑T−1
t=1 (∆βk

t )2
)

/(νk + T − 1) and νk + T − 1

degrees of freedom. We can choose informative priors for q2
k if

the shrinking of regression parameters is desired.

Similar analysis can be done for residual variance σ2 and
random-effect variance σ2

τ .

Sampling of AR coefficients rk from equation (3) was done
using a Metropolis step (see Kim et al. (1998), also for fitting
µk).
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3 Results

The results of an MCMC simulation are presented below. We
used the burn-in of 0 iterations and number of MC replicates
M = 50, 000, with every 50th selected for the output.
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First, a plot of data and the model fit are shown for the first
120 months
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Figure 1: The data and model fit
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Figure 2: The MCMC output for βSOI

These clearly indicate the significant negative relationship
between the SOI index values and precipitation.
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Figure 3: Posterior means of βt
3, for all Months t.

Consistently positive values for β3 are indicative of the
well-documented relationship between elevation and
precipitation.
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A clearly expressed seasonal behavior is observed for β3, as well
as MG and MFD:
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Figure 4: Seasonal behavior of coefficient βt
3 (elevation), MG

and MFD

For example, the elevation effects are more significant during
the Winter months (higher regression coefficient). Moisture
Flux Direction fluctuates in a narrow band between southerly,
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for Summer months, to south-westerly, for Winter months.

Histogram of MG

F
re

qu
en

cy

0 100 200 300 400

0
20

40
60

80

Histogram of MFD

F
re

qu
en

cy
150 200 250 300

0
50

15
0

Figure 5: Histograms of posterior means for Moisture Flux
Direction (MFD) and Moisture Gradient (MG), all months.
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The results indicate a consistent near-southerly MFD for most
months (about 180◦, clockwise with 0◦ pointing North), and a
somewhat less consistent Moisture Gradient. It would be
interesting to further investigate the dependence of MG on the
SOI phases.
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Figure 6: Posterior histograms of Moisture Gradient (MG)
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Posterior quantiles of variance parameters:

parameter 5% 25% 50% 75% 95%

σ 2.828 2.848 2.863 2.878 2.897

στ 2.994 3.108 3.182 3.266 3.402

q0 0.294 0.348 0.387 0.450 0.578

q1 0.062 0.064 0.065 0.067 0.069

q2 0.063 0.065 0.066 0.068 0.070

q3 0.846 0.958 1.062 1.149 1.281

q4 0.236 0.260 0.281 0.306 0.349

q5 0.244 0.270 0.294 0.319 0.360
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Posterior quantiles of mean parameters:

parameter 5% 25% 50% 75% 95%

µ1 -0.004 0.002 0.005 0.009 0.015

µ2 -0.005 -0.001 0.002 0.004 0.009

µ3 3.951 4.082 4.174 4.276 4.394

µ4 -0.637 -0.591 -0.560 -0.530 -0.488

µ5 -0.200 -0.153 -0.121 -0.090 -0.048

The values of µ4 and µ5 are indicative of the MFD value
staying in a narrow band (see Figure 4 above)

Autoregression coefficients r3 and r5 were significantly different
from 0. This indicates predictability of β regression coefficients
for elevation and MFD, likely due to seasonality of these effects
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(see Figure 4).

R code and the data used are available from
http://www.nmt.edu/~olegm/JSM06/

4 Conclusions

A time-varying regression model was introduced, describing
spatial and temporal variability of the precipitation in a given
area. A fairly regular seasonal behavior is observed for some
elements in our model, in particular, Moisture Flux Direction.

There is a significant negative influence of SOI values on the
average monthly precipitation. Thus, it confirms the hypothesis
of teleconnections between ENSO and the climate in northern
New Mexico. This has a potential significance for predicting
water supply, especially in semi-arid Southwestern US.
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