Multiple testing for genomics applications with Negative Binomial distribution

Oleg Makhnin
New Mexico Tech

September 6, 2019

Bioinformatics applications (microarrays, RNA-seq) require simultaneous testing of multiple quantitative traits. For example, in gene expression studies, two or more groups are compared, and we wish to identify which genes are expressed differently in these groups.

In this work, I develop a full Bayesian testing procedure based on hidden variables. Instead of previously used Lognormal distribution, the Negative Binomial distribution will be used.

Central Dogma

$\because D^{8} b^{\prime} \circlearrowleft$ Protein

RNA-seq

Data: counts of fragments of RNA ("reads") mapped to each Gene

genome
Quantifies Gene expression, i.e. a measure of activation of each Gene.

Data

Gene	Group1	Group2				Group3			
PGF	125	105	75	64	47	82	213	123	102
PGGT1B	109	137	299	119	229	228	71	158	202
PGK1	8027	12701	20352	6352	13306	22870	3418	10577	12240
PGK2	0	1	3	1	2	4	0	0	1

RNA-Seq data are the counts of RNA fragments that are mapped to a particular gene. As count data, they are usually modeled as Poisson, or, to account for extra variation, Negative Binomial (NB) distribution.

Most popular current methods for diff.exp. in RNA-seq are based on NB distribution, pooling information across genes using empirical Bayesian methods.

R/Bioconductor packages edgeR, baySeq, DEseq ...

edgeR and DEseq2 history

Month	Nb of distinct IPs	Nb of downloads
Jan/2010	310	490
Feb/2010	272	3311
Mar/2010	298	513
Apr/2010	428	726
May/2010	587	957
Jun/2010	635	1066
Jul/2010	563	1043
Aug/2010	301	913
Sep/2010	561	900
Oct/2010	714	1166
Nov/2010	765	1243
Dec/2010	592	938
$\mathbf{2 0 1 0}$	4481	$\mathbf{1 3 2 6 6}$

Month	Nb of distinct IPs	Nb of downloads
Jan/2014	1604	2723
Feb/2014	1962	3659
Mar/2014	1891	3289
Apr/2014	2296	4440
May/2014	2643	5300
Jun/2014	2457	4324
Jul/2014	2580	5217
Aug/2014	2413	4380
Sep/2014	3200	5624
Oct/2014	4237	7857
Nov/2014	3172	6188
Dec/2014	3208	6188
$\mathbf{2 0 1 4}$	$\mathbf{2 2 4 3 1}$	$\mathbf{5 9 1 8 9}$

DESeq2 2014 stats.tab

Month	Nb of distinct IPs	Nb of downloads
Jan/2018	10037	19262
Feb/2018	9079	16223
Mar/2018	10628	19546
Apr/2018	9231	17764
May/2018	9995	20526
Jun/2018	9210	18063
Jul/2018	9821	21185
Aug/2018	8538	18577
Sep/2018	9049	18333
Oct/2018	12369	24068
Nov/2018	12029	22419
Dec/2018	11262	19784
2018	$\mathbf{8 3 4 9 4}$	$\mathbf{2 3 5 7 5 0}$

Month	Nb of distinct IPs	Nb of downloads
Jan/2018	7442	17415
Feb/2018	7213	16701
Mar/2018	8307	19901
Apr/2018	8269	19840
May/2018	9127	23079
Jun/2018	8084	20105
Jul/2018	8565	21699
Aug/2018	7837	18945
Sep/2018	7853	18260
Oct/2018	9019	21413
Nov/2018	11576	25345
Dec/2018	9112	18532
$\mathbf{2 0 1 8}$	$\mathbf{7 2 8 1 3}$	$\mathbf{2 4 1 2 3 5}$
DESeq2	2018 stats.tab	

Negative Binomial (NB) distribution

$$
\begin{equation*}
P(X=u)=\frac{\Gamma(u+r)}{\Gamma(r) u!}(1-p)^{u} p^{r} \tag{1}
\end{equation*}
$$

In the limit, as $r \rightarrow \infty$, we will get Poisson distribution.
NB distribution has some nice properties: for example, if $X_{1}, X_{2}, \ldots, X_{n}$ are independent NB with parameters (p, r) then $Y=X_{1}+X_{2}+\ldots+X_{n}$ is also NB with parameters $(p, n r)$.

We will use a different parameterization though: (m, r) with $m=\frac{(1-p) r}{p}$. It will lead to a less correlated Gibbs Sampler (below). m is the mean parameter, and r is the dispersion parameter.

Multiple testing

https://xkcd.com/882/
If the significance cutoff for the p -value is $\alpha=0.05$ then 1 out of 20 results will be False Positive. If we are testing 20,000 genes then how many results will be FP?

An easy way to deal with it: Bonferroni correction. If there are n tests to run, use a p-value cutoff of α / n for each single test, then we will get only α probability of a False Positive.
$\alpha($ False Positive Rate $) \approx \frac{\text { number of False Positives }}{\text { total number of genes }}$
very inefficient!

Multiple testing

False Positive Rate

$$
\alpha \approx \frac{F P}{T}
$$

	Different	Not Diff.	
Test +	TP	FP	P
Test -	FN	TN	
			\mathbf{T}

But this is too strict. Researchers would not mind a false positive every now and then. Therefore, use False Discovery Rate (FDR), or " q-value", instead of p-value. 5% FDR will mean 1 out of 20 genes I found is expected to be False Positive.

$$
F D R=\frac{\text { number of False Positives }}{\text { total number of positives }}=\frac{F P}{P}
$$

Model

Two groups X and Y, for Gene k,

$$
\begin{array}{ll}
X_{k, i} \sim N B\left(m_{k}, r_{k}\right) & \text { for } i=1, . ., n_{A} \\
Y_{k, j} \sim N B\left(m_{k} D_{k}, r_{k}\right) & \text { for } j=1, . ., n_{B} \tag{2}
\end{array}
$$

Borrow info across Genes to better estimate dispersion r_{k}. $D_{k}>0$ is the ratio of "differential expression" for Gene k between groups.
The prior densities of D_{k} are

$$
\begin{array}{ll}
\pi\left(D_{k}\right)=(\gamma-1) D_{k}^{-\gamma}, & D_{k}>1 \\
\pi\left(D_{k}\right)=(\gamma-1) D_{k}^{\gamma-2}, & 0<D_{k}<1 \tag{3}
\end{array}
$$

where $\gamma>1$ for integrability ("proper prior")

Hidden variable method

Idea: introduce hidden variables which indicate whether the change occurred.

$$
h_{k}=\left\{\begin{array}{rll}
1, & \text { if } D_{k}>1 & \text { up } \tag{4}\\
0, & \text { if } D_{k}=1 & \text { no change } \\
-1, & \text { if } 0<D_{k}<1 & \text { down }
\end{array}\right.
$$

with prior probabilities p_{-}, p_{+}and $p_{0}=1-p_{-}-p_{+}$.
Bayesian Markov Chain Monte Carlo computation through Gibbs sampler produces samples of all unknown variables and parameters.

Our method allows an easy estimation of q-values:

$$
\begin{gathered}
q_{k}^{+}=1-\#\left\{h_{k, m}=1, m=1, \ldots, M\right\} / M=1-p_{k}^{+} \\
q_{k}^{-}=1-\#\left\{h_{k, m}=-1, m=1, \ldots, M\right\} / M=1-p_{k}^{-}
\end{gathered}
$$

where $h_{k, m}$ is the m th sample from the hidden variable h_{k}.
M is the Monte Carlo sample size.

Gibbs sampler

- Based on Full Conditional Posterior (FCP) densities:

$$
f \text { (parameter } j \mid \text { all other parameters) }
$$

For example, the FCP of r_{k} is

$$
\begin{aligned}
& \ln f\left(r_{k} \mid \ldots\right)=\text { const }+\sum_{i} \ln \Gamma\left(X_{k, i}+r_{k}\right)+n_{A} r_{k} \ln r_{k}- \\
& -\left(n_{A} r_{k}+\sum_{i} X_{k, i}\right) \ln \left(r_{k}+m_{k}\right)+\text { similar terms with } Y_{k, j}
\end{aligned}
$$

This is not any known density, but Metropolis algorithm allows sampling, no need for proportionality constant.

...Gibbs sampler

- Draw samples from all the parameters based on their FCPs, obtain a long Monte Carlo sample of all parameters involved, use the samples to find estimates.
- The method hangs on our ability to integrate out D_{k} to get the FCP of h_{k}.
- Important to get computationally feasible and efficient algorithms!

Computation

Our method fits the framework of Bayesian model-based inference. The model is fitted using MCMC with the Gibbs sampler. The sample proportion of h_{k} is used to estimate the posterior probabilities p_{k}^{+}and p_{k}^{+}. Then let $p_{k}^{D E}=\max \left\{p_{k}^{+}, p_{k}^{-}\right\}$.

To obtain a test with estimated genomewise FDR (false discovery rate) below q_{0}, declare

$$
\text { Gene } k \text { differentially expressed if } 1-p_{k}^{D E}<q_{0}
$$

No multiple testing correction is necessary!
This test may be overly conservative since the actual $1-p_{k}^{D E}$ may be much lower than q_{0} threshold (i.e. $F D R<q_{0}$)
Adjustment: let $\widehat{F D R}=\operatorname{mean}\left\{1-p_{k}^{D E}: 1-p_{k}^{D E}<q_{0}\right\}$

Examples

Examples

Conclusions

Our method is based on full Bayesian inference (MCMC) and is potentially more flexible in modeling gene expression. Also, it enables a straightforward calculation of false discovery rate (FDR).

More work is needed to evolve the method: help wanted!
Skills needed: R programming, Bayesian inference.

Bibliography

- Storey, Tibshirani (2003) Statistical significance for genome-wide studies. PNAS, 100: 9440-9445
- Robinson, McCarthy and Smyth (2010) EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139-140 Cited by 11976
- Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESEQ2. Genome Biology, 15, 550 Cited by 11092

QUESTIONS?

THANK YOU!

see

euler.nmt.edu/~olegm/talks/GibbNB

