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Bioinformatics applications (microarrays, RNA-seq) require
simultaneous testing of multiple quantitative traits. For example,
in gene expression studies, two or more groups are compared, and
we wish to identify which genes are expressed differently in these
groups.

Based on a Bayesian framework developed earlier, I propose
extensions for testing with correlated data, and for multi-level
testing. Additionally, I present some opportunities for students to
get involved.



Dogma



RNA-seq

Data: counts of fragments of RNA (“reads”) mapped to each Gene

Quantifies Gene expression, i.e. a measure of activation of each
Gene.



Data

.......
RNA-Seq data are the counts of RNA fragments that are mapped
to a particular gene. As count data, they are usually modeled as
Poisson, or, to account for extra variation, Negative Binomial
distribution.

Most popular current methods for diff.exp. in RNA-seq are based
on Negative Binomial distribution, pooling information across
genes using empirical Bayesian methods.

R/Bioconductor packages edgeR, baySeq, DEseq ...



Multiple testing

https://xkcd.com/882/

If the significance cutoff for the p-value is α = 0.05 then 1 out of
20 results will be False Positive. If we are testing 20,000 genes
then how many results will be FP?

An easy way to deal with it: Bonferroni correction. If there are n
tests to run, use a p-value cutoff of α/n for each single test, then
we will get only α probability of a False Positive.

α (False Positive Rate) ≈ number of False Positives

total number of genes

very inefficient!

https://xkcd.com/882/


Multiple testing ....

α (False Positive Rate) ≈ number of False Positives

total number of genes

But this is too strict. Researchers would not mind a false positive
every now and then. Therefore, use False Discovery Rate (FDR),
or q-value, instead of p-value. 5% FDR will mean 1 out of 20
genes I found is expected to be False Positive.

FDR =
number of False Positives

total number of positives



P- and Q-values

The usual approach: declare the change (in gene k) statistically
significant when p − value < α, for a given threshold α.

α= false positive rate (FPR). Due to multiple testing, a correction
is required.
Q-value (Storey and Tibshirani, 2003) is the opposite of p-value:

P-value ≈ P(Test positive | no change) = False Positive Rate

Q-value = P(no change | Test positive)
= False Discovery Rate

Q-value may be more desirable to practitioners: ”What fraction of
genes I have ‘discovered’ are bogus?”



Model

Nk,i : read count for Gene k , sample i . Two experimental
conditions A, B.

logNA
k,i = µk + εAk,i , i = 1, ..., nA

logNB
k,i = µk + Dk + εBk,i , i = 1, ..., nB

(1)

where µk is the baseline mean for the Gene k , and Dk is the
amount of “differential expression” for Gene k between A and B.

Dk ∼ Normal(0, τ2) with probability pDE

Dk = 0 with probability 1− pDE
(2)

The errors εk,i are Normal with mean 0 and the Gene-specific
variance σ2k . Borrow info across Genes to better estimate σ2k .



Gibbs sampler

• Based on Full Conditional Posterior (FCP) densities:

f (parameter j | all other parameters)

For example, the FCP of σ2k is inverse scaled Chi-square with
parameters df = dfprior + nA + nB and

scale =
dfprior · σ20 +

∑
(logNA

k,i − µk)2 +
∑

(logNB
k,i − µk − Dk)2

df

• Draw samples from all the parameters based on their FCPs,
obtain a long Monte Carlo sample of all parameters involved, use
the samples to find estimates.

• Important to get computationally feasible and efficient
algorithms!



Hidden variable method

Traditionally, after P-values are computed, they are converted into
q-values (FDR) with, e.g., Benjamini-Hochberg procedure.

We can obtain them naturally while running Gibbs sampler.
Idea: introduce hidden variables which indicate whether the change
occurred. hk = 1, if change in Gene k

hk = 0, if no change in Gene k

Bayesian Markov Chain Monte Carlo computation through Gibbs
sampler produces samples of all unknown variables and parameters.
Our method allows for easy estimation of q-values:

qk = #{hk,m = 1,m = 1, ...,M}/M = pDE
k

where hk,m is the mth sample from the hidden variable hk .
M is the Monte Carlo sample size.



Computation

Our method fits the framework of Bayesian model-based inference.
The model is fitted using MCMC with Gibbs sampler with
conjugate priors. The average value of hk is used as an estimate of
the posterior probability pDE

k that the Gene k is differentially
expressed. No multiple testing correction is necessary!

To obtain a test with estimated genomewise FDR (false discovery
rate) below q0, declare Gene k differentially expressed iff
pDE
k < q0.

This test may be overly conservative since actual pDE
k may be

much lower than q0 threshold.

Adjustment: pick q0 but let F̂DR = mean{pDE
k : pDE

k < q0}



Simulation studies

Several simulation scenarios were run, some are based on Negative
Binomial scenario in [Hardcastle and Kelly, 2010], some on our
lognormal Model. Parameters are designed to mimic real RNA-seq
datasets.

Number of genes N = 1000 (too small, but helps obtain more
independent runs faster), percentage of positives p = 0.1.

Run times: Gibbs sampler employed in gibbSeq is expensive, it
takes minutes on a standard desktop computer even for N = 1000.
DEseq and edgeR run faster.

We compare ROC curves (with varying FDR thresholds), and how
precisely FDR is estimated by the methods.



ROC curves

All methods behave similarly when the data are Neg.Bin.
distributed



ROC curves

gibbSeq performs better when the data are Lognormally
distributed.



checking FDR

Neg. Bin. distribution: gibbSeq estimates actual FDR fairly well.
DEseq gives mixed results. edgeR underestimates FDR.



checking FDR

Lognormal distribution:
gibbSeq estimates actual FDR almost perfectly.
DEseq and edgeR both underestimate FDR.



Next steps

1) Correlated data. Genes can be ”co-expressed”, for example, as
a part of the same biological pathway.



Next steps

2) Multi-level inference. Researchers are interested not only in
single genes, but in gene sets (e.g. which pathways are activated).

Main idea: together with pDE for all Genes, estimate pjDE for each

Gene Set j . Declare Gene Set j to be diff. expressed if pjDE > pDE

consistently across samples.



Example: NRAP data [Peter Guerra, Rebecca Reiss].

Instead of Genes, we look at bacterial Species.

Kingdom: Bacteria
Phylum: Firmicutes

Class: Clostridia
Order: Clostridiales

Family: Lachnospiraceae
Genus: Anaerostipes

Species: Anaerostipes hadrus

Compare the abundance of species (and Genera, Families etc.)
before and after remediation.



Conclusions

Our method is based on full Bayesian inference (MCMC) and is
potentially more flexible in modeling gene expression. Also, it
enables a straightforward calculation of false discovery rate (FDR).

Even in cases of small counts when normal approximation does not
hold, our method can still outperform the established methods.

More work is needed to evolve the method: help wanted!

Skills needed: R programming, Bayesian inference.
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QUESTIONS?



THANK YOU!

see www.nmt.edu/~olegm/talks/Gibb2

www.nmt.edu/~olegm/talks/Gibb2

