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Can you read this?
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Image: F' = a matrix of grayscale intensities (real numbers in

a bounded interval), generally assumed unknown

Image blurring: each pixel is spread out according to some
matrix B, at the maximum of m pixels across and m pixels

up/down.

Data: a blurred image G = ICgF' with the operator g based
on the pixel blurring operation B applied to each pixel, and the
results added up.

Deblurring problem: Based on the given blurred image G
(and, maybe, B), restore “as well as possible” the original

image F’
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Matrix form: if F' and GG are turned into vectors f,g then g = Kgf

with some matrix K = Kpg.

However, the matrix K is usually not invertible. Also, there’s often

noise involved:

g=Kf+e

Loss of information from blurring; some recovery is possible

because the image F' is redundant

- /




I. Bayesian approach
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Bayesian regularization

The image is treated as Gauss-Markov Random Field with the

values at any site/pixel s = (i, j) dependent on its neighbors.

Thus, the prior distribution for the image is

p(F) ocexp{zag > <F<t>F<s>>2}

sites s~t

The likelihood of the data G given the image F'

% Z [G(s) — KF(neighb. of s)]2}

€ sites s

p(G|F) o exp {

the parameters o and o, control the degree of smoothness and

overall sharpness of the posterior distribution
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Posterior probability

Makes the Bayesian inversion, that is

Posterior o« Prior X Likelihood

_ 1 2
log p(F|G) = const 702 Sit;Nt(F(t) F(s))
—2% Z [G(s) — KF(neighb. of s)]°
Te sites s

Based on this (for example, finding its maximum, or maybe mean)

we can produce an estimate of F'

The posterior p(F|G) is a multi-dimensional distribution that’s

hard to compute. Instead, we can sample its values (i.e. get the

“typical” values of F).
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Gibbs sampler:

To set up a Gibbs sampler, we start with random values for the
parameters (in our case, values of F'). Then, sample from the full

conditional posteriors

In a simple single-site updating scheme, update F(s) based on the

values of its neighbors.

Pressures to:

An evolution scheme which eventually migrates to “likely” F.

~

P(a parameter| all other parameters, data G,o,0.)

1) conform to its neighbors
2) conform to the data G
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Metropolis algorithm

In order to draw from P(F'(s)|F (neighbor sites),G), we use
Metropolis algorithm:

1. Draw a new candidate fpe, for F'(s)

2. Compare the posteriors post = p(F|G) with the old and the

new F'.

3. If the new value has higher posterior, then accept it.
If lower, then accept it with probability = post, e /p0sto1q

It’s nice because the knowledge of proportionality constant in
p(F|G@) is not required!

Furthermore, one can use simulated annealing based on Metropolis
algorithm to find the “most likely” F.
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[Demo of Gibbs here]
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Some results: F,G,KF
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Some results:
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Coeing = egsy.
You just stare &t
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Coding s easy.
You just stare at
e screen until
croplets of blood
=tart forming on
wallr forehead
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II. Regularization approach
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Regularization approach:

Instead of solving mfin | K f — gl|, let’s solve

min|[Kf ~ g1|* + o ]

i.e. penalize large values of f

Compute the singular value decomposition (SVD) of K:

K =UDV'

consists of singular values of K.

-

where U,V are orthogonal matrices, and D = diag{dy, da, ...
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Let K be a regularized inverse of K (see below)

then, the deblurred image Fis
F=K'G=VD'U'G
where the inverse DV is taken using

d.
dr = "%
L 042‘|‘d%

However, K is huge...

-
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Note: if K is a circulant matrix,

Co Cn—1 Cn—2 ... Co C1
C1 Co Cn—1 C3 C2
K =
i Cn—1 Cnp—2 ce C1 Co i
then
K =WDW*

where D is diagonal, and W is unitary, but now they have complex
values. (W contains basis for Discrete Fourier Transform.)

- /
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Such K assumes the toroidal structure of the image (first row
linked to the last row etc.)
D contains the Fourier coefficients for the first column of K. It is

real-valued if the blur B is symmetric.

No worries, we can still do the regularization D:
F=K"G=W*'D"WG
As an added bonus, we use FFT (Fast Fourier Transform), that is

multiplying by W is equivalent to making a FFT, and multiplying
by W* is equivalent to a ...
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[Live demo here]
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GEMAN AND YANG: NONLINEAR IMAGE RECOVERY WITH HALF-QUADRATIC REGULARIZATION

Fig. 1. Experiment 1, Lefi: Hubble data after despiking. Right: restored by our algorithm.
| Geman & Yang
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Would you please deblur me?

oo
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Challenge: unknown B
Now, in many cases B is not given. How do we find it?

One idea: we can set up a Gibbs sampler to repeatedly draw from
p(B|F,G), p(F|B,G)

(the latter maybe by FFT approach)

p(B|F,G) can be obtained using multivariate Gaussian, however a

lot of computation when B is large
Will this work?
Can we use FFT for p(B|F,G) somehow?
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Thanks!




