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Can you read this?
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• Image: F = a matrix of grayscale intensities (real numbers in
a bounded interval), generally assumed unknown

• Image blurring: each pixel is spread out according to some
matrix B, at the maximum of m pixels across and m pixels
up/down.

• Data: a blurred image G = KBF with the operator KB based
on the pixel blurring operation B applied to each pixel, and the
results added up.

• Deblurring problem: Based on the given blurred image G

(and, maybe, B), restore “as well as possible” the original
image F
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Matrix form: if F and G are turned into vectors f, g then g = KBf

with some matrix K = KB .

However, the matrix K is usually not invertible. Also, there’s often
noise involved:

g = Kf + e

Loss of information from blurring; some recovery is possible
because the image F is redundant
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I. Bayesian approach
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Bayesian regularization

The image is treated as Gauss-Markov Random Field with the
values at any site/pixel s = (i, j) dependent on its neighbors.

Thus, the prior distribution for the image is

p(F ) ∝ exp

{
− 1

2σ2

∑
sites s∼t

(F (t)− F (s))2
}

The likelihood of the data G given the image F

p(G|F ) ∝ exp

{
− 1

2σ2
e

∑
sites s

[G(s)−KF (neighb. of s)]2
}

the parameters σ and σe control the degree of smoothness and
overall sharpness of the posterior distribution
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Posterior probability

Makes the Bayesian inversion, that is

Posterior ∝ Prior× Likelihood

log p(F |G) = const− 1
2σ2

e

∑
sites s∼t

(F (t)− F (s))2−

− 1
2σ2

e

∑
sites s

[G(s)−KF (neighb. of s)]2

Based on this (for example, finding its maximum, or maybe mean)
we can produce an estimate of F

The posterior p(F |G) is a multi-dimensional distribution that’s
hard to compute. Instead, we can sample its values (i.e. get the
“typical” values of F).
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Gibbs sampler:

To set up a Gibbs sampler, we start with random values for the
parameters (in our case, values of F). Then, sample from the full
conditional posteriors

P (a parameter| all other parameters, data G, σ, σe)

In a simple single-site updating scheme, update F(s) based on the
values of its neighbors.

Pressures to:
1) conform to its neighbors
2) conform to the data G

An evolution scheme which eventually migrates to “likely” F.
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Metropolis algorithm

In order to draw from P (F (s)|F (neighbor sites), G), we use
Metropolis algorithm:

1. Draw a new candidate fnew for F (s)

2. Compare the posteriors post = p(F |G) with the old and the
new F .

3. If the new value has higher posterior, then accept it.
If lower, then accept it with probability = postnew/postold

It’s nice because the knowledge of proportionality constant in
p(F |G) is not required!

Furthermore, one can use simulated annealing based on Metropolis
algorithm to find the “most likely” F.
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[Demo of Gibbs here]
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Some results: F̂ , G,KF̂
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Some results:
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II. Regularization approach
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Regularization approach:

Instead of solving min
f

||Kf − g||, let’s solve

min
f

||Kf − g||2 + α||f ||2

i.e. penalize large values of f

Compute the singular value decomposition (SVD) of K:

K = UDV ′

where U, V are orthogonal matrices, and D = diag{d1, d2, ...., dN}
consists of singular values of K.
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Let K+ be a regularized inverse of K (see below)
then, the deblurred image F̂ is

F̂ = K+G = V D+U ′G

where the inverse D+ is taken using

d+
i =

di

α2 + d2
i

However, K is huge...
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Note: if K is a circulant matrix,

K =



c0 cn−1 cn−2 . . . c2 c1

c1 c0 cn−1 . . . c3 c2

. . .
...

. . .
...

. . .
. . .

...

cn−1 cn−2 . . . c1 c0


then

K = WDW ∗

where D is diagonal, and W is unitary, but now they have complex
values. (W contains basis for Discrete Fourier Transform.)
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Such K assumes the toroidal structure of the image (first row
linked to the last row etc.)
D contains the Fourier coefficients for the first column of K. It is
real-valued if the blur B is symmetric.

No worries, we can still do the regularization D+:

F = K+G = W ∗D+WG

As an added bonus, we use FFT (Fast Fourier Transform), that is
multiplying by W is equivalent to making a FFT, and multiplying
by W ∗ is equivalent to a ...
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[Live demo here]
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Geman & Yang
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Would you please deblur me?

21



'

&

$

%

Challenge: unknown B

Now, in many cases B is not given. How do we find it?

One idea: we can set up a Gibbs sampler to repeatedly draw from

p(B|F,G), p(F |B,G)

(the latter maybe by FFT approach)

p(B|F,G) can be obtained using multivariate Gaussian, however a
lot of computation when B is large

Will this work?

Can we use FFT for p(B|F,G) somehow?
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Thanks!
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