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Eigenfaces

L. Sirovich and M. Kirby (1987)

A popular technique to identify main features of a face; also serves
as an illustration to Principal Components Analysis (PCA)/
Karhunen-Loeve decomposition/ Empirical Orthogonal functions
etc.

Data: n observations of a d-dim vector x. Represent as a matrix

X = [x1....xn]

In our context: d = dimension of the image (d = nrow × ncol),
taken as a vector. (Ignore spatial information!)
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Data

Data: from FERET database

Facial REcognition Technology (see
http://www.itl.nist.gov/iad/humanid/feret/feret master.html)
(about 1000 subjects and 4000 frontal images)

Frontal images, 96*64, so that d = 6144, n = 200 so far.
Two images per person (100 persons) to give an idea about
variability.
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Eigenvalue decomposition

Eigenvalue decomposition of Covariance matrix:

C =
1

n − 1
(X−mean)′(X−mean)

• symmetric, positive-definite
• mean = columnwise mean (mean of x1 in the 1st column,

mean of x2 in the 2nd etc.)

thus
C = VΛV′

Λ is diagonal with eigenvalues, V is unitary, columns are
eigenvectors

However, C is a d × d matrix, of rank only n:
problems when d > n.
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SVD

Another way: SVD (singular value decomposition)

X−mean = Xo = UDV′

U,V are unitary, D is diagonal

X is not necessarily symmetric now

note
C = X′

oXo = VDU′UDV′ = VDDV′

so that

Λ =
1

n − 1
DD

Columns of V form an orthonormal adaptive basis.

Oleg Makhnin Dept. of Mathematics New Mexico Tech

Eigenfaces and Deformations



Intro Eigenfaces Deformations Eigenfaces and deformations

Illustration

The columns of V, or “principal components” are known as
eigenfaces.
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Image “Compression”

If we only keep k most important eigenfaces, we can reduce the
image dimensionality/ database size
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Difficulties

I The vector approach ignores the spatial structure of the face
image.

I Different centering/scale and lighting conditions. Different
expressions.

I Eigenfaces are mostly blurry features (i.e. “low-frequency”
information)

IVariations of the technique: Fisherfaces (uses discriminant
analysis to separate images of one person from images of
another; e.g. answers the question which regions are
important)

ILaplacianFaces (uses manifold techniques)
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Deformations

• Deformation is defined on a coarse grid (e.g. iris paper)

J. Thornton, M. Savvides and V. Kumar (2007), A Bayesian
Approach to Deformed Pattern Matching of Iris Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Volume
29(4), 596-606

(however they only applied deformation to matching a given image
to the database, not in the database construction itself)

• then is smoothly extended pixel-wise
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Deformations

Unexpected link: particle image velocimetry (PIV)
F Scarano (2002) Iterative image deformation methods in PIV
Meas. Sci. Technol. 13 R1-R19 PII: S0957-0233(02)20239-8
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Primitive idea

1) estimate optimal shifts by maximizing correlation between
square fragments of the coarse grid

2) smooth out to define the deformation vector field for every pixel

(primitive: extrapolate from the corners of a square formed by
points of coarse grid)
(more sophisticated: splines)

3) move the pixels according to the deformation field
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Primitive idea (cont’d): Moving the pixels

A problem: non-integer shifts

Primitive solution: weigh the intensity according to fractional value
of the shift

< pic here >

More sophisticated: apply Fourier transform (FT) to the image;
then shifting the image will mean applying a phase shift to the FT,
then inverse FT. However, deformation is not constant.

⇒ Digital filtering
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Fitting a coarse deformation

Primitive idea: move blocks of pixels around to reach highest
correlation between deformed image and reference image

More advanced approach:

I minimize square discrepancy between the deformed image and
the reference image. (likely Monte-Carlo methods)

I Bayesian twist: add a prior that regularizes the deformation
field. Then we can find the MAP (Maximum a Posteriori
Estimate) which is generalization of the Maximum Likelihood/
Least square approaches
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Experiments
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Much work to be done!!!
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Deformations and eigenfaces

Deform all other images to one arbitrarily chosen reference.
What happens to eigenfaces?
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Reference image

New mean image
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Eigenfaces and deformations

So far, just deformed all images to an arbitrarily chosen reference,
see how the eigenfaces change.

Potentially: should be an iterative process, for example

1) define a single “canonical image” for each person
2) define eigenfaces based on the canonical images
3) recalculate canonical images (deformation) based on the few
important eigenfaces

If the task is e.g. pattern-matching, then match the (suitably
deformed) query image to a canonical image.
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QUESTIONS?

Oleg Makhnin Dept. of Mathematics New Mexico Tech

Eigenfaces and Deformations



Intro Eigenfaces Deformations Eigenfaces and deformations

THANK YOU!

www.nmt.edu/~olegm/talks/DEF.pdf

for pdf file
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