Intro		

Oleg Makhnin Dept. of Mathematics New Mexico Tech

February 27, 2009

Oleg Makhnin Dept. of Mathematics New Mexico Tech

	Eigenfaces and deformations

Part I. Eigenfaces Part II. Deformations Part III. Eigenfaces and deformations

Intro	Eigenfaces	
Eigenface	es	

L. Sirovich and M. Kirby (1987)

A popular technique to identify main features of a face; also serves as an illustration to Principal Components Analysis (PCA)/ Karhunen-Loeve decomposition/ Empirical Orthogonal functions etc.

Data: n observations of a d-dim vector x. Represent as a matrix

$$\mathbf{X} = [\mathbf{x}_1....\mathbf{x}_n]$$

In our context: d = dimension of the image $(d = n_{row} \times n_{col})$, taken as a vector. (Ignore spatial information!)

Oleg Makhnin Dept. of Mathematics New Mexico Tech

Intro	Eigenfaces	Eigenfaces and deformations
(
Data		

Data: from FERET database

Facial REcognition Technology (see http://www.itl.nist.gov/iad/humanid/feret/feret_master.html) (about 1000 subjects and 4000 frontal images)

Frontal images, 96*64, so that d = 6144, n = 200 so far. Two images per person (100 persons) to give an idea about variability.

Eigenvalue decomposition

Eigenvalue decomposition of Covariance matrix:

$$\mathbf{C} = rac{1}{n-1} (\mathbf{X} - mean)' (\mathbf{X} - mean)$$

• symmetric, positive-definite

• mean = columnwise mean (mean of \mathbf{x}_1 in the 1st column, mean of \mathbf{x}_2 in the 2nd etc.)

thus

$\mathbf{C} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}'$

 $\pmb{\Lambda}$ is diagonal with eigenvalues, \pmb{V} is unitary, columns are eigenvectors

However, **C** is a $d \times d$ matrix, of rank only *n*: problems when d > n.

Oleg Makhnin Dept. of Mathematics New Mexico Tech

	Eigenfaces	
SVD		

Another way: SVD (singular value decomposition)

$$X - mean = X_o = UDV'$$

 $\boldsymbol{U},\boldsymbol{V}$ are unitary, \boldsymbol{D} is diagonal

X is not necessarily symmetric now

note

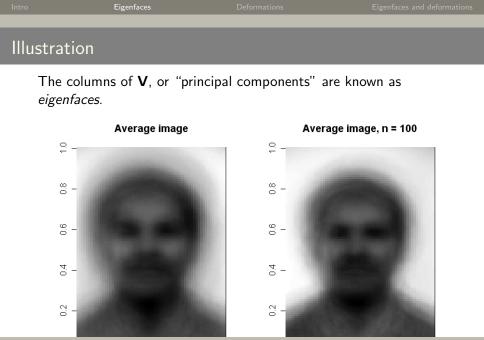
$$\mathbf{C} = \mathbf{X}_o' \mathbf{X}_o = \mathbf{V} \mathbf{D} \mathbf{U}' \mathbf{U} \mathbf{D} \mathbf{V}' = \mathbf{V} \mathbf{D} \mathbf{D} \mathbf{V}'$$

so that

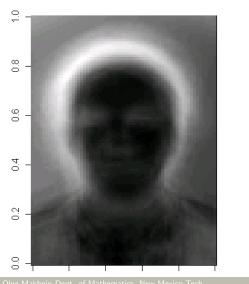
$$\Lambda = \frac{1}{n-1}$$
DD

Columns of **V** form an orthonormal *adaptive* basis.

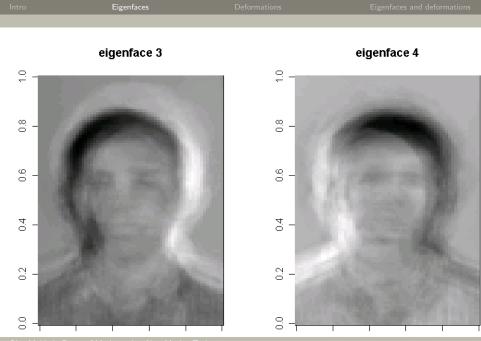
Oleg Makhnin Dept. of Mathematics New Mexico Tech



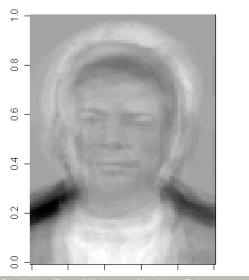
eigenface 1

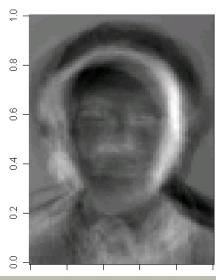


oleg maximin Dept. of mathematics new mexic



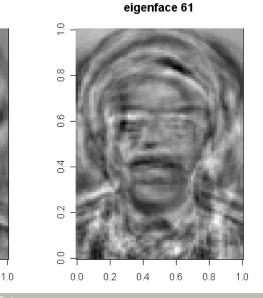
eigenface 5

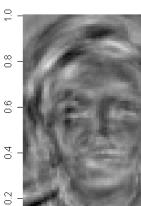




Oleg Makhnin Dept. of Mathematics New Mexico Tech

eigenface 60





Oleg Makhnin Dept. of Mathematics New Mexico Tec

0.6

0.8

0.4

Eigenfaces and Deformations

0.2

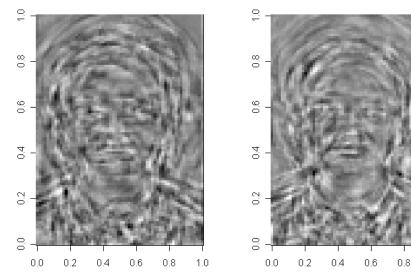
0.0

0.0

1.0

eigenface 160

eigenface 161



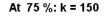
Oleg Makhnin Dept. of Mathematics New Mexico Tech

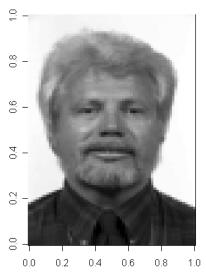
Image "Compression"

If we only keep k most important eigenfaces, we can reduce the image dimensionality/ database size

Oleg Makhnin Dept. of Mathematics New Mexico Tech

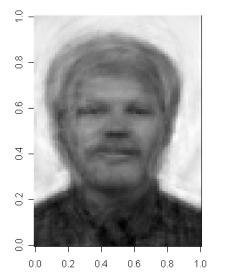
Lossless (n= 200)





Oleg Makhnin Dept. of Mathematics New Mexico Tech

At 50 %: k = 100



Oleg Makhnin Dept. of Mathematics New Mexico Tech

	Eigenfaces	
Difficulties		

The vector approach ignores the spatial structure of the face image.

	Eigenfaces	
D.(() .		
Difficulti	es	

- The vector approach ignores the spatial structure of the face image.
- Different centering/scale and lighting conditions. Different expressions.

Intro	Eigenfaces	
Difficult	ies	

- The vector approach ignores the spatial structure of the face image.
- Different centering/scale and lighting conditions. Different expressions.
- Eigenfaces are mostly blurry features (i.e. "low-frequency" information)

	Eigenfaces	
Difficulties		

- The vector approach ignores the spatial structure of the face image.
- Different centering/scale and lighting conditions. Different expressions.
- Eigenfaces are mostly blurry features (i.e. "low-frequency" information)
- Variations of the technique: Fisherfaces (uses discriminant analysis to separate images of one person from images of another; e.g. answers the question which regions are important)

	Eigenfaces	
Difficulti	es	

- The vector approach ignores the spatial structure of the face image.
- Different centering/scale and lighting conditions. Different expressions.
- Eigenfaces are mostly blurry features (i.e. "low-frequency" information)
- Variations of the technique: Fisherfaces (uses discriminant analysis to separate images of one person from images of another; e.g. answers the question which regions are important)

LaplacianFaces (uses manifold techniques)

		Deformations	
Deform	ations		

• Deformation is defined on a coarse grid (e.g. iris paper)

J. Thornton, M. Savvides and V. Kumar (2007), *A Bayesian Approach to Deformed Pattern Matching of Iris Images.* IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 29(4), 596-606

(however they only applied deformation to matching a given image to the database, not in the database construction itself)

• then is smoothly extended pixel-wise

	Deformations	Eigenfaces and deformations

THORNTON ET AL .: A BAYESIAN APPROACH TO DEFORMED PATTERN MATCHING OF IRIS IMAGES

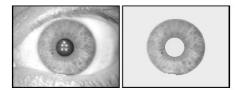
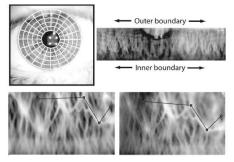


Fig. 1. Sample eye image and its isolated iris pattern.

Fig. 2. Top left: Location of iris region by boundary detection. Top right: Unwrapped iris pattern in normalized polar coordinates. Bottom: Close-ups of segmented patterns captured from same eye (landmark points illustrate relative deformation).

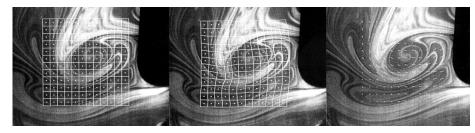


597

Oleg Makhnin Dept. of Mathematics New Mexico Tech

Deformations

Unexpected link: particle image velocimetry (PIV) F Scarano (2002) Iterative image deformation methods in PIV Meas. Sci. Technol. 13 R1-R19 PII: S0957-0233(02)20239-8



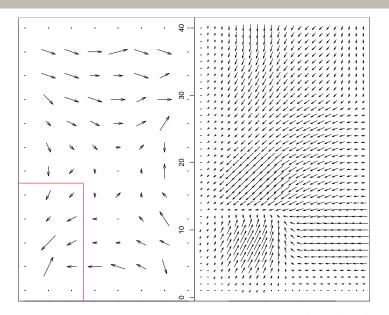
Oleg Makhnin Dept. of Mathematics New Mexico Tech

		Deformations	
_			
Primiti	<i>i</i> dea		

- 1) estimate optimal shifts by maximizing correlation between square fragments of the coarse grid
- 2) smooth out to define the deformation vector field for every pixel

(primitive: extrapolate from the corners of a square formed by points of coarse grid) (more sophisticated: splines)

3) move the pixels according to the deformation field



Primitive idea (cont'd): Moving the pixels

A problem: non-integer shifts

Primitive solution: weigh the intensity according to fractional value of the shift

< pic here >

More sophisticated: apply Fourier transform (FT) to the image; then shifting the image will mean applying a phase shift to the FT, then inverse FT. However, deformation is not constant.

 \Rightarrow Digital filtering

Fitting a coarse deformation

Primitive idea: move blocks of pixels around to reach highest correlation between deformed image and reference image

More advanced approach:

 minimize square discrepancy between the deformed image and the reference image. (likely Monte-Carlo methods)

Fitting a coarse deformation

Primitive idea: move blocks of pixels around to reach highest correlation between deformed image and reference image

More advanced approach:

- minimize square discrepancy between the deformed image and the reference image. (likely Monte-Carlo methods)
- Bayesian twist: add a prior that regularizes the deformation field. Then we can find the MAP (Maximum a Posteriori Estimate) which is generalization of the Maximum Likelihood/ Least square approaches

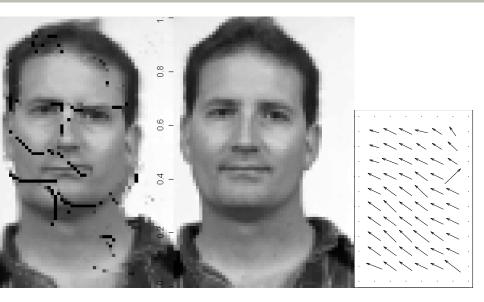
Experiments

Oleg Makhnin Dept. of Mathematics New Mexico Tech

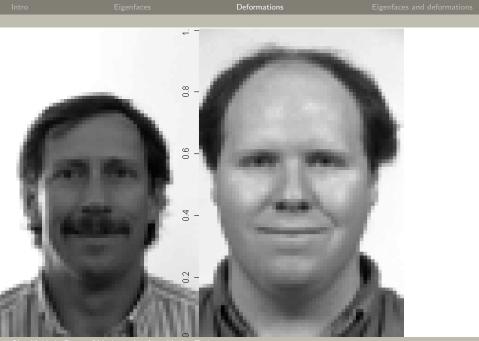
Intro

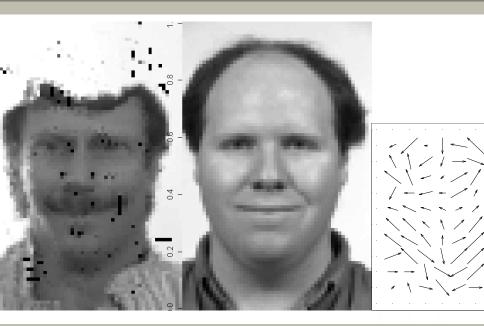
Eigenfaces

Deformations



Oleg Makhnin Dept. of Mathematics New Mexico Tech





Much work to be done!!!

Oleg Makhnin Dept. of Mathematics New Mexico Tech

Intro	Deformations	Eigenfaces and deformations

Deformations and eigenfaces

Deform all other images to one arbitrarily chosen reference. What happens to eigenfaces?

Oleg Makhnin Dept. of Mathematics New Mexico Tech

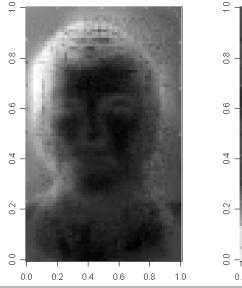
New mean image

Reference image

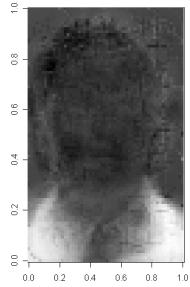
Average

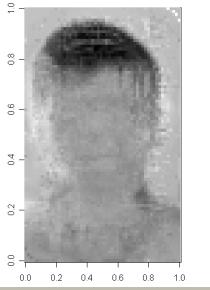
Oleg Makhnin Dept. of Mathematics New Mexico Tech

eigenface 1

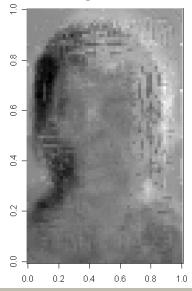


eigenface 2

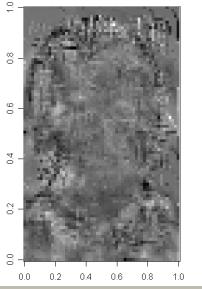




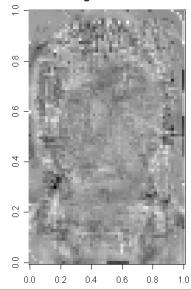
Dleg Makhnin Dept. of Mathematics New Mexico Tech



eigenface 45



eigenface 46



So far, just deformed all images to an arbitrarily chosen reference, see how the eigenfaces change.

Potentially: should be an iterative process, for example

1) define a single "canonical image" for each person

2) define eigenfaces based on the canonical images

3) recalculate canonical images (deformation) based on the few important eigenfaces

If the task is e.g. pattern-matching, then match the (suitably deformed) query image to a canonical image.

Intro		Eigenfaces and deformations

QUESTIONS?

Oleg Makhnin Dept. of Mathematics New Mexico Tech

THANK YOU! www.nmt.edu/~olegm/talks/DEF.pdf for pdf file

Oleg Makhnin Dept. of Mathematics New Mexico Tech