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ABSTRACT

FILTERING FOR SOME STOCHASTIC

PROCESSES WITH DISCRETE OBSERVATIONS

By

Oleg V. Makhnin

The processes in question are jump processes and processes with jumping velocity.

We estimate the current position of the stochastic process based on past discrete-time

observations (non-linear discrete ¯ltering problem). We obtain asymptotic rates for

the expected square error of the ¯lter when observations become frequent. These

rates are better than those of a linear Kalman ¯lter. For jump process, our method is

asymptotically free of the process parameters. Also, estimation of process parameters

is addressed.
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1 Introduction

This work deals with estimating the position of a stochastic process based on past
observations (¯ltering). With respect to square error, the optimal non-linear ¯lter is
the conditional expectation of the current state of the process given the observations.
The observations are discrete, and we are interested in the asymptotic behavior of
the non-linear ¯lter as these observations become more frequent.

Several factors may a®ect the asymptotic behavior of a non-linear ¯lter. One of
them is the nature of the process itself. The more irregular a process is, the harder
it will be to ¯lter. Another factor might be the distribution of observation errors.

The simplest example of such results is the estimation of the mean of a sequence of
i.i.d. variables. One can think about this mean as a \process" that remains constant
over time. Assume that the variables have a density with respect to Lebesgue measure
on R. As pointed out in a book by Ibragimov and Khas'minskii [13], the quality of
the estimate depends on whether or not this density is continuous. In the case of a
density with discontinuities, the phenomenon of \hyper-e±ciency" occurs. One gets
di®erent results, for example, in cases of normal distribution and uniform distribution.

1.1 Review of past results

Filtering is a major area of stochastic process theory. This has been progress-
ing rapidly over the last 40+ years, starting with Kolmogorov and Wiener. A
great deal of attention has been paid to the ¯ltering with continuous-time obser-
vations that typically involves stochastic di®erential equations. Among the major
contributions here are R. Kalman and R. Bucy (1961)[18], A. Shiryaev (1966)[25],
T. Kailath (1968)[14], M. Zakai (1969)[27], G. Kallianpur and C. Striebel (1969)[16],
G. Kallianpur (1980)[15], B. Rozovskii (1990) [23]. In most of these works, the obser-
vation noise is a Wiener process, or, more generally, the observation process satis¯es
a stochastic di®erential equation driven by a Wiener process.

Filtering with discrete-time observations was considered by Kalman (1960) [17]
and continued in multiple works, including Br¶emaud (1981)[3]. After the pioneering
work by Kalman, a lot of attention has been paid to linear ¯lters, which are linear
combinations of observed values. Many works have been devoted to the theory of
Kalman ¯lter, for example, Anderson and Moore (1979)[1]. Lately, as the computing
facilities have improved greatly, the focus has shifted to non-linear ¯lters, which
typically perform much better. Comparison with linear ¯lters is one of topics in this
work.

Yashin(1970)[26] derived the optimal non-linear ¯lter for situation when the pro-
cess X(t) is Markov taking values 0 and 1, and the observations are also 0 or 1. This
situation is expanded in the book by Elliott, Aggoun and Moore (1995)[10] in the
context of Hidden Markov Models. Their approach has become popular recently and
involves a change of measure, rendering the observations independent of the process
in question. One then arrives at a discrete-time version of Zakai equation, which
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presents a recursive way to compute the optimal ¯lter. This was used, for example,
in Dufour and Kannan (1999)[9] and Kannan(2000)[19].

The recent papers, to mention a few, are Portenko, Salehi and Skorokhod (1997)[21],
Ceci, Gerardi and Tardelli (2001)[5], Del Moral, Jacod, Protter (2001)[7]. The latter
deals with Monte-Carlo methods for estimating the optimal ¯lter, even in case when
no explicit expressions for the ¯lter are available. Monte-Carlo methods are also
discussed by Gordon et al. (1993)[12] and Doucet, de Freitas and Gordon (2001)[8].

Relatively little is known about the asymptotic behavior of ¯ltered estimates as
observations become frequent. Some results on this are given in [22]. This work con-
siders asymptotics for certain classes of stochastic processes. They include compound
Poisson processes and piecewise-linear processes.

The discrete observations are natural in target-tracking, when the process in ques-
tion is a position of a target, and our observations come from a radar. A special case
(with uniform errors) was considered by Portenko, Salehi and Skorokhod (1998) [22],
although they introduce many extra features useful for target-tracking like multi-
targets and false targets.

A general exposition of ¯ltering techniques employed can be found in [21]. A
detailed overview of the target-tracking from an engineer's prospective is given by
Bar-Shalom et al. [2].

1.2 Hyper-e±ciency

The results for parameter estimation in i.i.d. case are well desribed in [13]. They can
be summarized as follows. Suppose that fYkgk=1;:::;n is a sequence of i.i.d. random
variables with density fµ, depending on parameter µ.

a) Suppose that fµ is continuously di®erentiable, with a several additional regu-
larity conditions, including local asymptotic normality for the family ffµgµ2£. Then,
both Bayesian and maximum likelihood estimates are asymptotically normal with the
rate E(µ̂ ¡ µ)2 = C=n+ o(1=n).

b) Suppose that the densities fµ possess jumps at the ¯nite number of points
x1(µ); :::; xk(µ) and are continuously di®erentiable elsewhere, plus some identi¯ability
and regularity conditions. The earliest treatment of such a problem known to the
author is Cherno® and Rubin [6]. In this case both Bayesian and maximum likelihood
estimates have the rate E(µ̂¡µ)2 = C=n2+o(1=n2). That is, the estimates are \hyper-
e±cient".

An important special case is when the location parameter is estimated, that is
when fµ(x) ´ f (x¡µ). The di®erence between the above two cases can be illustrated
using normal distribution in case (a) and uniform distribution in case (b). For normal
distribution, the mean of observed values is a natural estimator with the expected
square error O(1=n). For uniform distribution on the interval [µ ¡ a; µ + a], the
estimator [max(Yk) +min(Yk)]=2 with the expected square error O(1=n2) is a better
estimator for µ than the mean. Thus, for a density with jumps, the best location
estimator is a function of observations near a discontinuity point.
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A generalization of these results to multi-dimensional variables and vector pa-
rameter µ is published by Ermakov [11]. (This problem also traces to Rubin [24].)
When the error density fµ has discontinuities along a smooth manifold Sµ, then both
Bayesian and maximum likelihood estimates for µ have asymptotic square error of
order 1=n2. He also has some results on the sequential estimation of such parameters.

The way our problem is di®erent lies in the stochastic-process perspective. We
are estimating not a stable, unchanging parameter, but a value of some stochastic
process in time.

1.3 Formulation of the problem

Process X(t) is a real-valued stochastic process on the interval [0; T ] or [0;1), de-
pending on the context. In general, suppose that the apriori distribution of the entire
process X(t; !) has a density ¼(X(¢)) with respect to measure º in a suitable function
space F[0; T ]. Also let the distribution of observations L(observationsjX(¢)) have a
density f in some space of observations. Keep the notation of X(¢) for the entire
trajectory of the process X .

In this work, we use two approaches:
a) when estimating the current position of the process X(t) at a given time t, use

the information obtained up to this instant (\¯ltering"), regardless of whether or not
the trajectory comprised of resulting estimates X̂(t) belongs to the speci¯c family F ,
and

b) when estimating the parameters of the process itself, based on observations
in the interval [0; T ], try to produce a process that belongs to the family F (\jump
process" below), that is reasonably \close" to X(¢).

Under certain conditions, prior distribution ¼t of X(t), consistent with ¼(X(¢)),
will have a density with respect to Lebesgue measure. As an estimate of process'
position, we use the posterior (with respect to ¼t) conditional expectation of X(t)
given all the observations up to the time t. It is well known that such estimator
minimizes the squared error of estimation.

Consider two varieties of process X :

² \Jump process". Consider a compound Poisson process

X(t) = X0 +
X

i:si·t
»i

where (si; »i) are the events of a 2-dimensional Poisson process on [0; T ]£R. The
intensity of this process is given by ¸(s; y) = ¸h(y), where ¸ > 0 is a constant
\time intensity" describing how frequently the jumps of X occur and hµ(y) is
the \jump density" describing magnitudes of jumps »i of process X. Here µ 2 £
is a parameter (possibly unknown) de¯ning the distribution of jumps. In the
Bayesian formulation, parameters µ and ¸ will have a prior density ¼(µ;¸) with
respect to Lebesgue measure. Assume that for each µ 2 £, E»2

1 <1.
Also, assume that starting value X0 has some prior density ¼X0

().

3



² \Piecewise Linear Process".

This is a process with jumping velocity V

X(t) = X0 +
Z t

0
V (s)ds

with V being a compound Poisson process described above.
Assume that the prior distribution of X0; V0 is known.

Observations
Our observations fYjg are always going to be \Process+noise" over a ¯nite grid of
values:

Yj = X(j=n) + ej

where the noise variables fejg are i.i.d. with some density Áµ, possibly depending on
a parameter µ and independent of process X . Assume that for each µ 2 £, Ee1 = 0,
and Ee2

1 <1.
A sample path of a Jump Process and observations are given below.

-
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Time

X(t), Y

1.4 Main results

We will consider asymptotics when n ! 1: as the observations become frequent,
but the process changes slowly (rate of change ¸ is bounded from above). When the
process X(¢) is changing fast, its di®usion approximations become appropriate, but
these are not discussed here.

We establish the following results:

² Recursive formulas for conditional density of process position given the obser-
vations.
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² Asymptotic rates for the estimate of position of jump (compound Poisson) pro-
cess.

² Asymptotic behavior of the parameters of jump process, as both observation
frequency and total time spent observing become large.

² Asymptotic rates for a piecewise-linear process.

² Comparison with linear ¯lters. Simulation results in a small-sample setting.
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2 Filtering of a jump process

The ¯ltering and Bayesian estimation problem can be formulated as follows: ¯nd
the conditional distribution of the states of the process X and unknown parameters
¸; µ given the observations (Yi), initial distirbution of X(0) = X0 and some prior
distribution on the unknown parameters.

2.1 Recursive formulation

The results in this section are in spirit of Elliott et al. [10]. In the future, use ¿ = 1=n
as the time between observations.

Denoting Xk := X(¿k), we have

Xk+1 = Xk + ³k+1 (1)

Yk = Xk + ek

³k is a sum of jumps of X on the interval [¿ (k ¡ 1); ¿k):

³k =
X

¿ (k¡1)· si<¿k
»i

Thus, f³kgk¸1 are i.i.d. with an atom of mass e¡¸¿ at 0 and the rest of the mass
having (improper) density ~Ã = ~Ãµ;¸ expressible in terms of the original density of
jumps hµ. To simplify the notation in the sequel, I will call Ã a \density", actually
meaning that Ã(0) is a scaled ±-function, that is for any function g,

Z
g(x)Ã(x)dx := e¡¸¿ ¢ g(0) +

Z
g(x) ~Ã(x)dx

Also, subscripts µ, ¸ in Áµ, Ãµ;¸ will be omitted.
Suppose the priors are given:

µ;¸ have density ¼(¢; ¢);
X0 has density ¼X0

(¢):

Our goal is to ¯nd the posterior conditional distribution

L¼(Xk j Y1; :::; Yk):

From (1), we obtain the densities

pY1;:::;Yk(y1; :::; yk j X0; :::;Xk ; µ) =
kY

j=1

Á(yj ¡Xj )

pX0;:::;Xk(x0; :::; xk j µ; ¸) = ¼X0
(x0)

kY

j=1

Ãµ;¸(xj ¡ xj¡1):
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For briefness, let's denote

xk := (x0; :::; xk); Xk := (X0; :::;Xk); Yk := (Y1; :::Yk):

Now, applying Bayes' Theorem, the joint density of Xk, Yk , µ and ¸ is

p(xk ;yk ; µ; ¸) = p(yk j xk ; µ; ¸) ¢ p(xk j µ; ¸) ¢ ¼(µ; ¸) =

= ¼(µ;¸) ¢ ¼X0
(x0) ¢

kY

j=1

Á(yj ¡ xj) ¢
kY

j=1

Ã(xj ¡ xj¡1); (2)

and the conditional density given the observations

p(xk ; µ; ¸ j Yk) =
p(xk;Yk; µ;¸)R

Rk

R
£

R
R p(xk ;Yk ; µ; ¸)dxk dµ d¸

:

Introduce

qk(x; µ; ¸) :=
Z

Rk
p(xk;Yk ; µ; ¸) dx0::::dxk¡1:

It is an unnormalized density of the latest state Xk and parameters µ; ¸ given the
observations Yk . The normalized density pk(x; µ; ¸) is then given by

pk(x; µ; ¸) :=
Z
p(xk ; µ; ¸ j Yk)dx0::::dxk¡1 =

qk(x; µ; ¸)R
R

R
£

R
R qk(x; µ; ¸)dx dµ d¸

:

The reason we use this density in an unnormalized form is the recursive relation:

Theorem 1

q0(x; µ;¸) = ¼X0
(x) ¢ ¼(µ;¸);

qk(x; µ; ¸) = Áµ(Yk ¡ x) ¢
Z

R
Ãµ;̧ (x ¡ z)qk¡1(z; µ; ¸) dz = (3)

= Áµ(Yk ¡ x) ¢ [e¡¸¿qk¡1(x; µ; ¸) +
Z

R

~Ãµ;¸(x¡ z)qk¡1(z; µ; ¸) dz]:

Proof: Straightforward, follows from integrating (2)
2

Remark.
1. In order to use Theorem 1 for the estimation of state Xk, we will compute
qj(x;µ; ¸); j · k consecutively, then compute marginal unnormalized density qk(x) :=R
qk(x; µ;¸) dµ d¸ and then ¯nd

X̂k := E(XkjYk) =

R
R xqk(x)dxR
R qk(x)dx

: (4)

2. Although not derived explicitly, the unnormalized density q has to do with a
change of the original probability measure to, say, Q, which makes the observations
Y1; :::; Yk independent of the process X(t). This way, prior distributions on (µ; ¸) and
X(0) ensure that the two measures are absolutely continuous with respect to each
other. The change of measure approach is used extensively in non-linear ¯ltering.

The recursive formulas for the densities can be used to compute \on-line" updates
as new observations are coming in.
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2.2 Single-block upper bound for expected square error.

Next, we investigate asymptotic properties of the above ¯ltering estimator X̂(T ) :=
X̂nT as the observations become frequent (n ! 1). First, we will produce a sub-
optimal estimator of X(T ) based on a single \block" of observations at time points
immediately preceding T .

Assume that the last observation is obtained exactly at the moment T . Denote

`T (¿) := E(X̂(T )¡X(T ))2:

The following discussion is based on the well-known fact (e.g. see [3, p. 84])

Lemma 1 For a square-integrable random variable X, sigma-algebra F and an F-
measurable random variable U ,

E[X ¡ E(XjF)]2 · E(X ¡ U)2

2

Setting F := ¾fY1; :::; Ykg, we can see that the ¯ltered estimator X̂k introduced by
(4) has the smallest expected square loss among all possible estimators of Xk based
on observations Yk .

To produce an upper bound on `T (¿), consider the following sub-optimal estimator
of X(T ):

Y k(¢) :=
X

k¡n¢<j·k
Yj=(n¢);

where ¢ is the block length to be speci¯ed later. Here, k = k(¿ ) = T=¿ , so that
X(T ) = Xk.

Theorem 2 . Asymptotic upper bound for E(X̂ ¡X)2

As ¿ ! 0,

`T (¿) · (¸E»2
1 + Ee2

1)
p
¿ + o(

p
¿ ) (5)

Proof: Consider the estimate Y k(¢) introduced above. By Lemma 1, it is no better
than X̂(T ), that is

`T (¿) · E[X(T )¡ Y k(¢)]2:

Suppose that the process X has m jumps on the interval (T¡¢; T ], with the locations
of jumps ~s1; :::; ~sm and the heights of jumps ~»1; :::; ~»m .
Denote

S0 := X(T ¡¢);

Sj := Sj¡1 + ~»j; 1 · j · m

consecutive values taken by X(t) for t 2 (T ¡¢; T ], and Sm ´ X(T ).
Note that

Emaxj (Sm ¡ Sj)2 ·
X

j

E(Sm ¡ Sj)2 =
m(m + 1)

2
E»2

1 :

8



Therefore,

E[X(T )¡ Y k(¢)]2 · Ee2
1

n¢
+ e¡¸¢E»2

1

"
¸¢ + :::

(¸¢)m

m!
£ m(m + 1)

2
+ :::

#

Setting ¢ = ¿b for some 0 < b < 1, the above becomes

= Ee2
1 ¢ ¿1¡b + (1¡ ¸¿ b)E»2

1

h
¸¿ b + o(¿b)

i
:

Setting b = 1=2, we obtain the statement of the Theorem.
2

Remark. Note that since the estimating procedure we used did not depend on µ,
the above Theorem is also true when the parameter µ is unknown. In that case, one
needs to consider Bayesian loss

`BT;¼(¿ ) =
Z

£
Eµ(X̂(T )¡X(T ))2¼(µ) dµ

and, integrating (5), obtain the bound

`BT;¼(¿ ) · p¿
Z

£
(¸E»2

1 + Ee2
1)¼(µ) dµ + o(

p
¿)

To produce ¯ner approximations, we have to assume the knowledge of the error
distribution.

2.3 Multiple-block upper bound

Next, we modify our estimating procedure. Starting with time T , we will probe one
block of observations after another, stopping whenever we believe that a jump has
occurred.

The following results were obtained when the error distribution is considered

known. Denote ¾e :=
q

Ee2
1.

We use the same idea as before: produce a sub-optimal estimate forX(T ) based on
Y for a suitable interval. The di±culty lies in not knowing where exactly the last jump
of process X occurred. Consider the intervals (blocks) (T1; T0]; (T2; T1]; :::; (TN ; TN¡1],
where

T0 := T

Tj := Tj¡1 ¡ (ln n)j=n; j = 1; :::;N

TN+1 := 0:

There is a total of

N =
ln n

ln ln n
¡ 1

blocks; j-th block has length (ln n)j=n and nj := (ln n)j observations. The last block
has length 1=ln n.

9



Let Xj be the value of the process at the end of j-th block, that is Xj := X(Tj¡1).
Let Y j be the average of observations on the block j, that is

Y j := n¡1
j

X

k

Yk I(Tj < k¿ · Tj¡1):

Assumption 1 . Let

Âm :=

Pm
k=1 ek
¾e
p
m

be the normalized sum of m errors. Assume that for the distribution of errors ek
the following is true. There exist constants C1, C2, C3 and K > 0 such that for all
su±ciently large m and all integers j

E[Â2
m I(jÂm j > C1 ¢m1=Kj)] < C2 exp(¡C3m

1=j):

This assumption is satis¯ed for Normal errors with K = 2; in general, it requires ek
to have small tails.

The following is a simpler-looking but more restrictive than Assumption 1:
Assumption 10 . For Âm given above, there exist constants G; ° > 0 such that for
all su±ciently large m,

E exp(°jÂm j) · G:

Proposition 1 Assumption 10 implies Assumption 1 with K = 1.

Proof:
Suppose that Assumption 10 is satis¯ed. Let Fm(:) be the distribution function of
Âm . Pick C1 such that x2 < exp(°jxj=2) for jxj > C1.
Then for any j,

Z

R
Ifjxj > C1m

1=jg x2 dFm(x) ·
Z

R
Ifjxj > C1m

1=jg e°jxj=2dFm(x) ·

· exp(¡°C1m
1=j=2)

Z

R
e°jxjdFm(x) ·

· exp(¡°C1m
1=j=2) ¢G

2

Theorem 3 . Tighter upper bound for E(X̂n(T )¡X(T ))2

Suppose that the error density Á is known and does not depend on the parameter
µ, and there exists a constant ¤0 such that ¸ · ¤0. Then, under Assumption 1, there
exists a constant C such that for n!1,

E(X̂n(T )¡X(T ))2 · C
lnMn

n

with M = (1 + 2=K) _ (3¡ 2=K).

10



Proof:
Consider N ¡ 1 blocks as described above. Denote T ? the point of last jump of X:

T ? = sup f0 · t · T : X(t)¡X(t¡) > 0g:
The idea is to approximate T ?, then take the average of all observations from that
moment up to T .

Construct an estimate of X(T ) as follows.
De¯ne j0 as

j0 := inffj > 0 :
p
nj
jY j ¡ Y j+1j

¾e
> 2C1 ¢ n1=Kj

j g ^N: (6)

Then, as our estimate of X(T ), take

~X(T ) := Y j0
:

We will ¯nd an upper bound for the average risk of this estimate, ` := E( ~X(T ) ¡
X(T ))2. For this, we will need several inequalities, with proofs to follow in the next
section.

Case 1 . Block 1 jump
On the event F that the last jump of X occurred on Block 1, F = fT1 < T ?g,

`F := E[( ~X(T )¡X(T ))2IF ] · C3
ln n

n
(7:1)

Case 2 . Correct stopping
In the event S that the last jump of X occurred just before the Block j0, S = fTj0+1 <
T ? · Tj0g

`S := E[( ~X(T )¡X(T ))2IS] · C4

ln2n

n
(7:2)

Case 3 . Late stopping
In the event L that the last jump of X occurred in Block j; 1 < j · j0,
L = fTj0 < T ?g

`L := E[( ~X(T )¡X(T ))2IL] · C5

(ln n)1+2=K

n
(7:3)

Case 4 . Early stopping
In the event E that we stopped on the Block j0 but there was no jump of X, E =
fT ? · Tj0+1g

`E := E[( ~X(T )¡X(T ))2IE ] · C6
(ln n)3¡2=K

n
(7:4)

Now note that P (F [ S [ L [ E) = 1. Thus, ` = `F + `S + `L + `E . Also, the
estimator ~X does not depend on ¸ and particular form of jump density hµ, as long
as the frequency of jumps ¸ is bounded.

By Lemma 1, the risk of estimate X̂ does not exceed the risk of ~X . Combining
(7.1) through (7.4), we obtain the proof of the Theorem.
2
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2.4 Proofs of inequalities used in Theorem 3

Proof of (7.1)
The probability of jump on the ¯rst Block, which has length ln n=n is
P (F ) = ln n=n+ o(ln n=n), and probability of more than one jump on the ¯rst Block
is o(ln n=n). Therefore,

E[( ~X(T )¡X(T ))2IF ] · (¾2
e=ln n+ E»2

1)ln n=n · C3
lnn

n
:

2

Proof of (7.2)
Let j0(!) be, as before, the last Block included in the computation of ~X(T ). First,
consider the special case j0 = N. Then

E[( ~X(T )¡X(T ))2ISI (j0 = N )] ·
· ¾2

e=(n=ln n) ¢ (1=ln n+ o(1=lnn)) · const=n

Now let j0 < N .
Suppose that the last jump T ?(!) occurred on the Block j0 + 1, that is, ! 2 S . Then
X(t) = X(T ) for Tj0 < t < T , and the squared loss from estimating X(T ) equals the
variance of Y j0 , so that

E[( ~X(T )¡X(T ))2ISI (j0 < N )] ·
NX

j=1

E[(Y j ¡X(T ))2IS] ·

·
NX

j=1

P (Tj+1 < T ? · Tj) ¢ ¾2
e=nj

by independence of fekg and process X . Thus,

`S · const=n+
NX

j=1

(lnj+1n=n+ o(lnj+1n=n)) ¢ ¾2
e ln

¡jn · C4

ln2n

n
:

2

Proof of (7.3)
Thanks to (7.1), we can exclude the case when the last jump T ? happens on Block 1.
Therefore, suppose that the last jump happens on Block J, J > 1, but we stop the
summation only at Block j0, j0 ¸ J .
Denote NJ := flast jump happens on Block Jg. Our stopping rule (6) implies that
for J · j · j0,

jY j ¡ Y j¡1j · 2¾eC1n
¡1=2+1=(j¡1)K
j¡1

Thus,

E[( ~X(T )¡X(T ))2INJ ] ·

· E(jX(T )¡ Y J¡1j2 +
j0X

j=J

jY j ¡ Y j¡1j2) ¢ P (jump on Block J) ·

12



·
"
lnJn

n
+ o(

lnJn

n
)

#
£
2
4¾2

e ln
¡(J¡1)n+ C7

NX

j=J

n¡1+2=(j¡1)K
j¡1

3
5·

· ¾2
e

ln n

n
+ C7

(ln n)1+2=K

n
· C5

(lnn)1+2=K

n

2

Proof of (7.4)
If the stopping occurred too early then X(t) = X(T ) for Tj0+1 < t < T . Also, the
stopping rule (6) implies that at least one of

jY j0+1 ¡X(T )j > C1¾en
¡1=2+1=j0K
j0 ;

jY j0 ¡X(T )j > C1¾en
¡1=2+1=j0K
j0

is true. Thus,

E[( ~X(T )¡X(T ))2IE ] ·
· EjY j0 ¡X(T )j2 ¢ P (jY j0+1 ¡X(T )j > C1¾en

¡1=2+1=j0K
j0 ) +

+E
³
jY j0 ¡X(T )j2I(jY j0 ¡X(T )j > C1¾en

¡1=2+1=j0K
j0 )

´
´ E1 +E2:

By Assumption 1, E2 · NC2exp(¡n1=j
j ) · C2(ln n)=n.

To estimate E1, consider the Chebyshov-type inequality

³
C1¾en

¡1=2+1=j0K
j0+1

´2
P (jY j0+1 ¡X(T )j > C1¾en

¡1=2+1=j0K
j0 ) ·

· E
³
jY j0+1 ¡X(T )j2I(jY j0+1 ¡X(T )j > C1¾en

¡1=2+1=j0K
j0+1 )

´
· C2(ln n)=n

by Assumption 1. Therefore

E1 ·
N¡1X

j=1

¾2
e=nj ¢ C2(ln n)=n ¢

³
C1¾en

¡1=2+1=jK
j+1

´¡2 ·

· C6

X

j

¾2
e

lnjn
¢ ln n
n
¢ (ln n)(1¡2=jK)(j+1) ·

· C6

X

j

(ln n)2¡2=K

n
· C6

(ln n)3¡2=K

n

2
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2.5 Lower bound for expected square error.

Let us, as before, have exactly n observations on the interval [0; T ] and the last
observation is made at the moment T . Then X(T ) = Xn.

To estimate the expected squared loss of the Bayesian estimate X̂n from below,
consider the estimator

X̧n = E(XnjY1; :::; Yn; Xn¡1; In);

where In = I(Xn6= Xn¡1) is indicator of the event that some jumps occurred on the
last observed interval.

It's easy to see that X̧n = E(XnjYn; Xn¡1; In) and that E(X̧n ¡Xn)2 · E(X̂n ¡
Xn)2, since the estimator X̧n is based on a ¯ner sigma-algebra.

Proposition 2 . The expected square error for X̧n,

E(X̧n ¡Xn)2 = C=n+ o(1=n);

where C > 0 is some constant not depending on n.

Proof:
Consider random variables

Zn » ~Ã

so that Xn = Xn¡1 + InZn, and

Wn = Zn + en:

Joint distribution of Zn;Wn does not depend on n and

P (Zn 2 dx;Wn 2 dy) = ~Ã(x)Á(y ¡ x):

Also note that on the event fIn = 0g, Xn = Xn¡1 and on the event fIn = 1g,
Yn = Xn¡1 + Wn. Therefore,

X̧n = E(XnjYn; Xn¡1; In) = Xn¡1 + InE(Zn j Wn):

Let Ẑn := E(Zn j Wn). Then

E(X̧n ¡Xn)2 = P (In = 1)E(Ẑn¡ Zn)2:

Clearly, E(Ẑn ¡ Zn)2 > 0 and P (In = 1) = 1¡ e¡¸=n = ¸=n + o(n¡1). This gives us
the statement of Proposition with C = ¸ ¢ E(Ẑn ¡ Zn)2:
2

This proposition shows us that the hyper-e±ciency observed in case of estimating
a constant mean (di®erent rates for di®erent error distributions) here does not exist,
because there's always a possibility of a last-second change in the process. The
following informal argument shows us what one can hope for with di®erent error
distributions.

14



Suppose that the number of observations J since the last jump is known. Set

·Xn = E(XnjY1; :::; Yn; J):

Just as before, E( ·Xn ¡Xn)
2 · E(X̂n ¡Xn)

2.
The optimal strategy is to use the latest J observations. If the error density Á has

jumps (e.g. uniform errors) then this strategy yields

E( ·Xn ¡Xn)2 ' n¡1(12 +
1

22
+ ::: +

1

J2
) ' 1

n

On the other hand, for the continuous error density (e.g. normal errors)

E( ·Xn ¡Xn)2 ' n¡1(1 +
1

2
+ ::: +

1

J
) ' ln n

n

15



3 Estimation of parameters of a jump process

Next, our goal is to estimate the parameters of process itself, that is the time-intensity
¸ and parameter µ describing jump density hµ, based on observations Y (t); 0 · t · T .
Recursive formula (Theorem 1) will allow us to do it. The question is: how e±cient
are these estimates?

Assume, as before, that the error density Á is known. Without loss of generality,
let ¾e = 1. Also, assume that ¸ is bounded by some constants: ¤1 · ¸ · ¤2.

When the entire trajectory of the process X(t; !) is known, that is, we know exact
times t1; t2; ::: when jumps happened, and exact magnitudes »i = X(ti)¡X(ti¡); i ¸
1, the answer is trivial. For example, to estimate intensity, we can just take ^̧ :=P
i̧ 1 I(ti · T )=T .

Likewise, inference about hµ will be based on the jump magnitudes »i. It's clear
that these estimates will be consistent only when we observe long enough, that is
T !1. In fact, we will consider limiting behavior of the estimates as both n and T
become large.

Now, when the only observations we have are noisy Yi, we can try to estimate the
locations and magnitudes of jumps of process X . Let n be number of observations
on the interval [0; 1]. Split the time interval [0; T ] into blocks of m = n¯ observations
each. Let Zk be the average of observations over Block k,

Zk =
1

m

mX

j=1

Ym(k¡1)+j

Consider several cases (see Figure 1). Let ® > 0 and ¯ > 0 be speci¯ed later.
Case 1.

p
mjZk+1 ¡ Zkj · m®.

In this case we conclude that no jump occurred on both Block k and Block k + 1.
Case 2.

p
mjZk+1 ¡ Zkj > m®,

p
mjZk¡1 ¡ Zkj · m®,

p
mjZk+2 ¡ Zk+1j · m®.

In this case we conclude that a jump occurred exactly between Block k and Block
k + 1, that is, at time t = mk=n. Here, estimate the magnitude of this jump as
»¤ = Zk+1 ¡ Zk .

Note: accumulation of errors does not occur when estimating » because the esti-
mates are based on non-overlapping intervals.

Case 3.
p
m(Zk+1 ¡ Zk) > m® and

p
m(Zk ¡ Zk¡1) > m®, orp

m(Zk+1 ¡ Zk) <m® and
p
m(Zk ¡ Zk¡1) < m®,

In this case we conclude that a jump occurred in the middle of Block k, that is, at
time t = m(k+ 0:5)=n. We estimate the magnitude of this jump as »¤ = Zk+1¡Zk¡1.

Case 4. Jumps occur on the same Block, or on two neighboring Blocks.
The probability that at least two such jumps occur on the interval of a ¯xed length
is asymptotically equivalent to (m=n)2n = m2=n. Picking ¯ < 0:5 we can make this
probability small.

Of course, there are errors associated with this kind of detection, we can classify
them as:

² Type I Error: we determined that a jump occurred when in reality there was
none (this involves Cases 2 and 3).
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² Type II Error: we determined that no jump occurred when in reality it did (this
involves Cases 1 and 4).

² Placement Error: we determined the location of a jump within a Block or two
neighboring Blocks incorrectly.

² Magnitude Error: the error when estimating the value of »i (jump magnitude).

Note that the placement error is small, it is of order m=n. The magnitude error is
based on averaging m i.i.d. values, and is therefore of order m¡1=2.

3.1 Errors in jump detection: Lemmas

Let's estimate the e®ect of Type I and II errors. Here, as in Section 2.3, we demand
that Assumption 1 hold.

Type I errors.
Assume that there are no jumps over the Blocks k and k + 1, but we detected one
according to Case 2 or 3.

Consider

P (
p
mjZk+1 ¡ Zkj > m®) = P (jÂm;k+1 ¡ Âm;k j > m®);

where

Âm;k =

Pm
j=1 em(k¡1)+j

¾e
p
m

is the sum of normalized errors. Further,

P (jÂm;k+1 ¡ Âm;kj > m®) · 2 ¢ P (jÂm;k j ¸ 0:5m®):

From Assumption 1, for any integer j > 0

E[Â2
m;k I(jÂm;kj > C1 ¢m1=Kj)] < C2 exp(¡C3m

1=j);

and the application of Chebyshov's inequality yields

P (jÂm;k j > C1 ¢m1=Kj) < C exp(¡C3 m
1=j) ¢m¡2=Kj

Picking j such that 1=Kj > ® > 1=(2Kj) and for m large enough, summing up over
Tnm¡1 blocks, we obtain

Lemma 2 . As n!1, provided that T grows no faster than some power of n,

P (Type I error) < C ¢ Tnm¡1exp(¡C3m
2K®)! 0

17



2

Type II errors.
Suppose that a jump occurred on Block k, but it was not detected (Case 1), that is

jZk¡1 ¡ Zk j _ jZk+1 ¡ Zkj · m®¡0:5

Of Blocks k ¡ 1, k + 1, pick the closest to the true moment of jump. Without loss
of generality, let it be Block k ¡ 1. Let » be the size of the jump. Then averages of
X(t) on Blocks k and k ¡ 1 are di®erent by at least »=2 and

P (jZk¡1 ¡ Zk j · m®¡0:5) · 2P (2jÂm;k j > j»j
p
m=2¡m®) <

< C ¢ Tnm¡1exp(¡C3m
2K") (8)

as n!1, as long as j»j > m¡0:5+®+", for an arbitrary " > 0 (use Assumption 1 in a
way similar to Lemma 2).
Consider separately

P (
[

i

fj»ij > m¡0:5+®+"g) · C (¸T + o(T ))m¡0:5+®+";

using the assumption that density of »i is bounded in a neighborhood of 0 and the
total number of jumps is ¸T + o(T ). Finally, take into account Case 4 which yields
an upper bound C¸T m2=n. Summing up, we obtain

Lemma 3

P (Type II error) < C ¢ ¸T (n(¡0:5+®+")¯ _ n2¯¡1)

2

3.2 Asymptotic behavior of parameter estimates.

For simplicity, determine the behavior of estimates separately, that is consider ¯rst
an estimate of ¸, and then an estimate of µ. Let µ 2 £, with £ being bounded subset
of R. Let true values of parameters be ¸0 and µ0.

Let t¤i be consecutive jumps of X(¢) determined by Cases 2, 3. Estimate the
intensity ¸ by

¸¤ :=
1

T

X

i¸1

I(t¤i · T ):

From the previous discussion it's clear that ¸¤ is asymptotically equivalent (as T !
1) to ^̧ determined from the \true" trajectory of process X. Thus, it possesses the
same property, that is asymptotical normality with mean ¸0 and variance C=T for
some constant C.

To estimate µ, use the following

Assumption 2 . Jump magnitude » belongs to an exponential family with densities
with respect to some measure ¹,

hµ(x) = exp(µB(x)¡ A(µ))

18



Under this Assumption, A(µ) = ln
R
exp(µB(x))d¹(x). Also, A0(µ) = EµB(») and

I(µ) := A00(µ) = V arµ[B(»)] is Fisher information. We follow the discussion in [20,
Example 7.1]. There, the Bayesian estimate with respect to prior ¼(µ),

~µ := E¼(µ j »i; i ¸ 1)

is asymptotically normal, under some regularity conditions on ¼(µ).

Assumption 3 .
(a) I(µ) > 0
(b) hµ(x) is bounded in a neighborhood of 0, uniformly in µ.
(c) There is a constant ° , 0 · ° · 1=4, such that for large enough N there exists ¢
such that P (j»ij > ¢) = o(N¡1) and

b¢ := supjxj·¢

¯̄
¯̄
¯
@

@x
(ln hµ(x))

¯̄
¯̄
¯ = supjxj·¢jµB0(x)j = o(N °)

uniformly in µ.

De¯ne the log-likelihood function based on estimated jumps

L¤(µ) =
NX

i=1

ln hµ(»
¤
i ):

Theorem 4 . Let Assumptions 1-3 hold. Then the maximum likelihood estimate

µ¤ = argmaxµ2£ L¤(µ)

is asymptotically normal, that is
q

(¸0T ) (µ¤ ¡ µ0)!N [0; I (µ0)¡1]

in distribution as T !1 no faster than T = n·, where · < (1=5) ^ (1¡ 4°).

Proof:
Pick ¯, ·, ® and " such that

· + 2¯ ¡ 1 < 0

· + ¯(¡0:5 + ®+ ") < 0

° ¡ ¯=2 < 0:

With ®; " arbitrarily small, this is achieved when 2· < ¯ < (1 ¡ ·)=2, so that
· < (1=5) ^ (1¡ 4°).

According to Cases 1-4, the estimated jump magnitudes are

»¤i = (»i + ±0
i )IEC + ±iIE ;

where E is the exceptional set where Type I and II errors occurred, ±i are the esti-
mates of » resulted from these errors, and ±0

i are \magnitude errors" discussed in the
beginning of this Section.
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From Lemmas 2, 3, P (E) ! 0 as n ! 1. Therefore we can disregard this set
and consider only

»¤i = »i + ±0
i :

Let N be the total number of jumps on [0; T ]. Consider the log-likelihood function

L(µ) =
NX

i=1

ln hµ(»i):

Under the conditions of Theorem, maximum likelihood estimate µ̂ = argmaxµ2£L(µ)
is asymptotically normal with given variance. Next, we would like to show that the
estimate µ¤ based on f»¤i g1·i·N is close to µ̂ based on true values of »i.

Note that both maxima exist because L00(µ) = ¡NA00(µ) and therefore L(µ) is a
convex function, the same is true for L¤(µ). Furthermore, for any µ in a neighborhood
of µ̂,

L(µ) = L(µ̂)¡ (µ ¡ µ̂)2

2
N A00(µ̂) + o(µ ¡ µ̂)2

Thus, if L(µ) ¡ L(µ̂) = o(1) then (µ ¡ µ̂)2N A00(µ̂) = o(1) and therefore (µ ¡ µ̂) =
o(N¡1=2).

According to Lemma 4, jL(µ) ¡ L¤(µ)j = o(1), and also jL(µ̂) ¡ L¤(µ̂)j = o(1).
Therefore, (µ¤ ¡ µ̂) = o(N¡1=2), and the statement of Theorem follows from the
similar statement for µ̂.
2

Lemma 4 . Under the conditions of Theorem 4,

jL(µ)¡ L¤(µ)j = o(1)

uniformly in µ, outside some exceptional set E1 with P (E1) = o(1).

Proof:
According to Assumption 3.3, the probability of event E1 :=

S
ifj»ij > ¢g is o(1).

Thus, excluding E1,

jL(µ)¡ L¤(µ)j ·
NX

i=1

jln hµ(»i)¡ ln hµ(»i + ±0
i )j ·

X

j»i j·¢

jµB0(»i)j ¢ j±0
i j · Cb¢n

¡¯=2

The statement of Lemma follows as ° < ¯=2.
2

Examples.
Assumption 3(c) is the hardest to verify. It holds, e.g., in following cases:

a) when B0(x) is bounded. For example, exponential distribution with hµ(x) =
exp(¡µx+ A(µ)); x ¸ 0.

b) The normal distribution with hµ(x) = exp(¡µx2 + A(µ)). Here one can pick
¢ = lnN, and then b¢ = µ ln(N )=2 = o(N °) for arbitrarily small °.
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4 Piecewise-linear process

4.1 Problem formulation

Let's consider the following simpli¯ed version of the problem.
Suppose that the velocity of the target is piecewise constant with jumps belonging
to the set ftk = k=n; k = 1; :::;ng, the probability of jump pn and distribution of
the height of a jump are known. Note that this restriction is not important since
for n ! 1 the di®erence between this and our original process X (with jumps at
arbitrary locations) becomes of order O(n¡2). We will be interested in the case when
pn = ¸=n+ o(1=n). Let ¿ = 1=n.

Denote Vk the velocity of the target on the interval [k=n; (k + 1)=n] and Xk the
position of the target at the point k=n.
Suppose the observations Yk are made at points 1=n; 2=n; ::::; (n¡ 1)=n; 1.
Overall, we have the model

Vk = Vk¡1 + ³k

Xk = Xk¡1 + ¿Vk¡1 (9)

Yk = Xk + ek;

where ek are i.i.d. observation errors with a known density Áµ, possibly also depending
on µ, and f³kgk=1;:::;n are i.i.d. with distribution

³k = 0 with probability (1¡ pn)
³k = »k with probability pn;

and f»kg are i.i.d. with a known density hµ, depending on some parameter µ.
Initial values X0,V0 and the parameter µ have some prior density ¼(x0; v0; µ).

Random variables X0,V0, f³kg and fekg are jointly independent.
The problem of ¯ltering is to ¯nd the posterior conditional distribution of the position
of process Xn and parameter µ given the observations Y1; :::; Yn.

4.2 Recursive ¯ltering equations

We will obtain the ¯ltering equations analogous to Section 2.1. But in this case, we
have to consider an unobservable variable (velocity), and the resulting ¯ltered density
will be two-dimensional.

To simplify notation, in the sequel we will write that ³k has \density" Ã ´ Ãµ.
Consider the joint density of V;µ and Y :

¹p¼k (x0; v0; :::; vk; y1; :::; yk ; µ) = ¼(x0; v0; µ)£
kY

j=1

Áµ(yj ¡ xj)
kY

j=1

Ãµ(vj ¡ vj¡1)
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where xk are uniquely determined from (9) as xk = x0 + ¿
Pk¡1
j=0 vj .

By changing the variables fx0; v0; v1; v2; :::; vkg to fx0; x1; x2; :::; xk ; vkg, we obtain
the joint density of X; µ;vk and Y :

p¼k(x0; x1; :::; xk ; vk ;y1; :::; yk; µ) = ~¼¿(x0; x1; µ)£
kY

j=1

Áµ(yj ¡ xj)£

£ 1

¿ k¡1

k¡1Y

j=1

Ãµ(
xj+1 ¡ 2xj + xj¡1

¿
)£ Ãµ(vk ¡ xk ¡ xk¡1

¿
); (10)

where prior density ~¼¿ (x0; x1; µ) can be determined from ¼(v0; x0; µ). The density is
\predictive" in its vk argument: though vk depends also on Yk+1, we do not include
Yk+1 into the equation.

Introduce q¼k (xk; vk ; µ) the unnormalized density of Xk, Vk (position and ve-
locity of the target at the moment k=n) and µ given the observations Y1; :::; Yk

q¼k (xk ; vk ; µ) =
Z
p¼k(x0; x1; :::; xk ; vk; y1; :::; yk; µ) dx0:::dxk¡1: (11)

Then the following recursive relation holds

Theorem 5 .

q¼0 (x; v; µ) = ¼(x; v; µ)

q¼k (x; v; µ) = ¿Áµ(Yk ¡ x) ¢
Z
Ãµ(v ¡ vk¡1)qk¡1(x ¡ vk¡1¿; vk¡1; µ) dvk¡1 =

= ¿Áµ(Yk ¡ x)
h
e¡¸¿qk¡1(x ¡ v¿; v; µ)+ (12)

+(1¡ e¡¸¿ ) ¢
Z
hµ(v ¡ vk¡1)qk¡1(x ¡ vk¡1¿; vk¡1; µ) dvk¡1

¸
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Proof: Replace vk¡1 = (xk ¡ xk¡1)=¿ and rewrite (11) as

q¼k (xk ; vk ; µ) =
Z
p¼k¡1(x0; x1; :::; xk¡1;

xk ¡ xk¡1

¿
; y1; :::; yk¡1; µ)£

£Áµ(Yk ¡ xk)Ãµ(vk ¡
xk ¡ xk¡1

¿
) dx0:::dxk¡1 =

= Áµ(Yk ¡ xk)
Z
qk¡1(xk ;

xk ¡ xk¡1

¿
; µ)Ãµ(vk ¡ xk ¡ xk¡1

¿
)dxk¡1

Changing the variable xk¡1 into xk ¡ vk¡1¿ , the above yields the statement of the
Theorem.
2

4.3 Asymptotics: special case

The question of interest is whether the asymptotic rate of the optimal Bayesian
estimate depends on the smoothness of error distribution, that is, whether \hyper-
e±ciency" takes place. In [22], the asymptotic rate for estimating a linear function
X(t) = X0 + V0t was found for uniform errors and was equal to O(n¡2). Will this
rate be changed when we shift to piecewise-linear?

Consider a special case. Let s have the (prior) uniform distribution on [0; 1] and
consider the following process instead of X :

W (t) = (t ¡ s)+ = (t¡ s) _ 0; 0 · t · 1

with observation errors ei having uniform distribution on the interval [¡°; °] (° > 0 is
known). The process W in this case is a piecewise linear function with all parameters
known except the turning point s, and we need to estimate s based on observations.
Note that estimating the ¯nal position W (1) is equivalent to estimating s.

It's clear that the asymptotic rate of E(Ŵ (1) ¡ W (1))2 is no worse than the
asymptotic rate of X from the previous section. Let's write the likelihood function
(the density of distribution L(s j observations Y1; :::; Yn))

f (s) = f (s j Y1; :::; Yn) =
Y

0·i=n·1

1

2°
Ifei ¸ (i=n¡ s)+ ¡ °g

Let true value of s = 1. Then the likelihood equals to a constant on the interval
[s¤; 1], and 0 otherwise, where

s¤ = minfu : (i=n¡ u)+ ¡ ei · °g:
Then, the Bayesian estimate of s (given its uniform distribution) is

ŝ = E(s j Y1; :::; Yn) = (s¤ + 1)=2

Consider the step function (see Figure 2)

Du(t) =
1¡ u

2
I(t >

u+ 1

2
):
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Figure 2

Note that Ds(t) ·W (t) · D2s¡1(t). Now consider

~s = minfu : Du(i=n)¡ ei · °g:

It's clear that ~s > s¤. Find the asymptotic rate of the estimate ŝ1 = (~s + 1)=2. We
have

P (~s · t) =
Y

t·i=n·1

1

2°
(2° ¡Ds(t)) = (1 ¡Ds(t))

(1¡t)n:

In case when t = C n¡1=2, P (~s · t) ¼ exp(¡C)! 0 when C !1. Thus, for s close
to 1, ŝ1 is 1¡O(n¡1=2).

The same statement can be obtained for ş = minfu : D2u¡1(i=n) ¡ ei · °g.
As a result, we would have ş < s¤ < ~s, and it follows that for s close to 1, s¤ is
1¡O(n¡1=2).

The case s = 1 is the worst, for s < 1 the estimate ŝ1 is s¡O(n¡1). Finally, this
yields the following for the expected square loss (with uniform errors)

Proposition 3 .

E(Ŵ (1)¡W (1))2 = O((1¡ ŝ)2 ¢ Cn¡1=2) = O(n¡3=2)

2

Keeping in mind that the expected square loss for normal errors cannot be lower than
O(n¡1), we obtain some \hyper-e±ciency" in this case, although not as good as when
estimating a constant [rate O(n¡2)].
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5 Comparison to linear ¯lters

The optimal linear ¯lter for our problem is the well-known Kalman ¯lter. Let's take
a look at its asymptotics.

5.1 Jump process

In case of jump process, the model can be re-written as a state-space model (for
example, see Brockwell and Davis [4])

Yt = Xt + et; t = 1; 2; :::

Xt = Xt¡1 + ³t

and subsequently the optimal linear predictor (the estimator of Xt based on all obser-
vations up to time t¡ 1) is based on second moments of et and ³t and can be written
as

¹Xt+1 = ¹Xt +
t

t + ¾2
e

(Yt ¡ ¹Xt)

where t = E(Xt ¡ ¹Xt)2 is de¯ned by

t+1 = t + E³2 ¡ 2
t

t + ¾2
e

and 0 depends on prior distribution of X0. Furthermore, the optimal linear ¯lter is

X̂t+1 = X̂t +
t

t + ¾2
e

(Yt ¡ ¹Xt) (13)

with the error

E(Xt ¡ X̂t)
2 = t ¡

2
t

t + ¾2
e

:

Note that when the observations become frequent (n ! 1), the optimal predictor
and optimal ¯lter become close.

It can be shown that ¯lter (13) is asympotically (when t!1) equivalent to the
exponential l̄ter

~Xt+1 = ~Xt + ¯(Yt ¡ ~Xt)

where ¯ = limt!1
t

t+¾2
e

and when n !1,

¯ =
q
¸=n ¢ ¾»=¾e + o(1=

p
n):

Thus, the asymptotic rate of the best linear ¯lter is of order n¡1=2:

E(Xt ¡ X̂t)
2 =

q
¸=n ¢ ¾»¾e + o(1=

p
n)
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See Figure 3 for the graphical comparison of linear (exponential) and optimal non-
linear ¯lters.
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5.2 Piecewise linear process

In case of piecewise linear process, we can reformulate (1) as a system of state-space
equations

Yt = Xt + etÃ
X
V

!

t+1

=

Ã
1 1=n
0 1

!Ã
X
V

!

t

+

Ã
²
³

!

t

where Xt is the current position of the process and Vt is the current velocity (note
that only position is observed, not velocity); as before, ³t is the jump in velocity over
the interval [t=n; (t+1)=n], and ²t is the change in X caused by this jump in velocity,
which is negligible (of order O(n¡2)) when n is large.

Applying the recursive equations for Kalman ¯lter (see [4]), we obtain the following

recursions for the best linear predictor

Ã
X
V

!

t

:

Ã
X
V

!

t+1

=

Ã
1 1=n
0 1

!Ã
X
V

!

t

+
Yt ¡ ¹Xt

w11 + ¾2
e

Ã
w11 +w21=n

w21

!

with the error matrix

t =

Ã
w11 w12

w12 w22

!

t

= E

2
4
Ã
X
V

!

t

¡
Ã
X
V

!

t

3
5
2
4
Ã
X
V

!

t

¡
Ã
X
V

!

t

3
5
T

de¯ned by recursive relation

t+1 =

Ã
1 1=n
0 1

!
t

Ã
1 0

1=n 1

!
+ Qt ¡

¡ 1

w11 + ¾2
e

Ã
(w11 +w21=n)2 (w11 + w21=n)w21

(w11 + w21=n)w21 w2
21

!

where

Qt =

Ã
0 0
0 ¾2

»¸=n

!
+ o(1=n):

It follows that the elements of matrix  = limt!1t are

w11 =
p

2¾3=2
e ¾1=2

» n¡3=4 + o(n¡3=4)

w12 = ¾e¾»n
¡1=2 + o(n¡1=2)

w22 =
p

2¾1=2
e ¾

3=2
» n¡1=4 + o(n¡1=4)

Furthermore, as n ! 1, the optimal predictor ¹Xt and optimal ¯lter X̂t are close.
Thus, the asymptotic e±ciency of the optimal linear ¯lter E(X̂t ¡ Xt)2 is of order
n¡3=4.

A summary of asymptotic behavior of ¾2 := E(X̂n¡Xn)2 for jump and piecewise-
linear processes is given in Table 1.
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smooth errors discontinuous errors Linear Filter

Jump Process · lnMn=n · lnMn=n n¡1=2

Piecewise-Linear Process ¸ n¡1 n¡3=2 (Special case) n¡3=4

Constant Location Parameter n¡1 n¡2 n¡1

Table 1. Summary of asymptotic results

One can see that increasing the \smoothness" of a process improves the asymptotics.
The behavior of the optimal linear and non-linear ¯lters for a piecewise-linear process
is shown in Figure 4. The optimal non-linear ¯lter was evaluated using the sequential
Monte-Carlo method described in [8].
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6 Simulation

The author has simulated the optimal ¯lter for the jump process based on Theorem 1.
There, the densities qk(x) are found recursively using the relation (3). We consider a
case when the parameters µ;¸ and initial state X0 are known, and the error density
is uniform on the interval [¡°; °]. This causes qk(x) to be con¯ned to an interval
[Yk ¡ °; Yk + ° ], and we keep a discretized version of qk(x) in memory. Integration
required for evaluating (3) was performed numerically.

The results of simulation are given in Table 2. In the case considered, distribution
of jumps is uniform on the interval [¡2:5; 2:5], with ° = 1, on the interval t 2 [0;9].
Two cases, ¿ = 0:02 and ¿ = 0:04 were considered. For each Monte-Carlo sample of
the process, the ratio of e®ectiveness of non-linear ¯lter to the linear one was found:

R :=

"P9¿
t=1( ~Xt ¡Xt)2

P9¿
t=1(X̂t ¡Xt)2

#1=2

;

where X̂t is the optimal non-linear ¯lter at time t and ~Xt is the optimal linear ¯lter.
Also, the mean square error MSnl of the optimal non-linear ¯lter is given. In each
case, N = 100 Monte-Carlo samples were generated.

¿ mean of R st.dev. of R MSnl

0.02 2.141 0.535 0.0249

0.04 1.749 0.407 0.0479

Table 2. Simulation results

This and other simulations lead us to believe that the optimal ¯lter becomes more
e®ective relative to the linear ¯lter when:

a) ¿ ! 0 (we know that from the asymptotics, as well as Table 2).
b) jump magnitudes increase, making the process more \ragged".
Intuitively, a linear l̄ter has to compromise between the periods where the process

stays constant (and for the ¯lter to perform better on those intervals, past observations
need to carry a greater weight) and the times when jumps happen (to cope with jumps,
we need to forget past observations quickly). As a result, greater jumps will upset the
performance of a linear ¯lter. Some adaptive ¯lters, for example, IMM ¯lter described
in [2], might be more competitive.
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7 Open problems

Naturally, it makes sense to extend the results for a piecewise-linear process (of which
only the special case is treated in Section 4). This is considerably more di±cult than
the jump process case, partly due to hyper-e±ciency. Another interesting task is to
cover the unknown error distribution (in most asymptotic results above, the latter
was assumed known). The results on parameter estimation (Section 3) might also be
improved.

Also, in view of possible applications, other forms of stochastic process X(¢) de-
serve to be considered. First, two- and three-dimensional processes are obviously
of interest. Second, some other types of processes, rather than jump and piecewise-
linear, might be more useful. Finally, one needs to consider the situation when param-
eters of the process are changing themselves, albeit slowly (\parameter tracking").
Such situation is considered in Elliott et al. [10], and no doubt the recursive formulas
similar to Theorem 1 could be derived in this case, too.
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Notation

Some special symbols used in this work.

E(X) expected value of X

s _ t max(s; t) s^ t min(s; t)

R set of real numbers

C;const some constant (often, their exact value is not speci¯ed but can be easily
obtained)

I(A) or IA indicator of the set/event A

AC complement of the set/event A

AT matrix A transposed

A ' B asymptotic equivalence, that is A=B = const+ o(1)

A := B de¯nition of expression A in terms of expression B

L(X);L(X j:::) distribution/conditional distribution of X

argminY f (Y ) the value z such that f (z) = minY f (Y )

N (¹; ¾2) Normal distribution with speci¯ed mean and variance.

34


