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ABSTRACT

The problem of stochastic precipitation generation has long been of interest.
A good generator should produce time series with statistical properties to match
those of the real precipitation. Here, we present a multivariate autoregression
model designed to capture the covariance and lag-1 cross-covariance structure of
the precipitation measurements. We use truncated and power-transformed nor-
mal distribution to simultaneously model both occurrences and amounts of daily
precipitation. We illustrate the methodology using daily rain gauge data sets for

three areas in Continental US.

Keywords: Gibbs sampler, Bayesian inference, precipitation generation, multi-

variate autoregression, cross-covariance, spatial-temporal process



1. Introduction

Precipitation is an extremely complex spatial-temporal process. Synthetic precipitation
generators, developed in order to simulate this process, have been an active topic of research
for more than three decades. They have found applications as inputs for agriculture and
hydrology models (Semenov and Porter, 1995), and are important for climate change studies
(Brissette et al, 2007). An ideal precipitation generator is supposed to possess statistical
properties that are very close to those of the real precipitation process, and it allows to

inexpensively generate very long precipitation sequences.

Simpler generators work for a single site at which simulation is desired, and more sophis-
ticated versions are multisite generators. The latter are designed to not only match the
precipitation statistics for each observation site separately, but also to capture and repro-
duce dependencies between sites. Finally, a high-density precipitation generator is desirable,
that would interpolate between the observation sites and provide the user with simulated

precipitation data over the entire study area.

Most of the recently introduced generators employ a separate occurrence process (which
is usually modeled by a Markov chain), and, for the sites where precipitation is deemed
to occur, a continuously distributed intensity process, for which various distributions have
been used (Gamma, Exponential and their mixtures, empirical and so on). Wilks (1998) in-
troduces correlations between sites through a delicate system of correlated Gamma random
variables. Yang et al (2005) consider a smaller study region within which all the stations
are assumed to be equally dependent on each other. Apipattanavis et al (2007) introduce

region-wide dry and wet weather states, and use a non-parametric multisite generator con-



ditioned on these states. Mehrotra and Sharma (2007) propose a non-parametric multisite
precipitation amounts generator, coupled with a separate precipitation occurrence generator
based on Markov Chains, and dependent on the long-memory “wetness” indicator. Furrer
and Katz (2007) use a generalized linear model (GLM) instead of a Markov Chain for the

occurrence process, followed by another GLM for the intensity process.

Bardossy and Plate (1992) followed by Stehlik and Bardossy (2002), and Sansé and Guenni
(2000) use a different approach based on truncated and power transformed (TPT) normal
distribution. For this type of model, the negative values of the distribution correspond to
the periods of no precipitation. We propose a version of this approach using multivariate
autoregression (MAR), designed to reproduce correlations and lag-1 cross-correlations be-

tween sites.

The use of multivariate normal (MVN) distribution in conjunction with TPT makes is conve-
nient to model multivariate processes, on one hand, and to unify the occurrence and intensity
processes, on the other. This helps borrowing information between the two processes, thus

potentially improving the model performance.

However, some questions have been raised (e.g. Yang et al(2005)) about possibly different
natures of the occurrence and intensity processes. Here, we investigate feasibility of TPT
modeling. We also discuss the difficulties in creating a synthetic precipitation product over

a dense grid of locations.

To fit the TPT-based models, we use Gibbs sampler. It is a Bayesian inference tool suited
well to the problem of filling in missing data (such as the unknown negative values we have

to deal with when no precipitation occurred). The Gibbs sampler is discussed in Section 3.c.



The data sets used for illustration are for three areas in Continental US: a set of 22 gauge
stations in Southwestern Colorado (CO), 27 stations in Minnesota (MN) and 25 stations in
teh state of New York (NY), see Fig. 1. These areas exhibit different climatic behaviors, es-
pecially in Colorado. The data sets are taken from http://www.cdc.noaa.gov/USstation/
and contain daily precipitation amounts for the period of 1950-1999 (Eischeid et al, 2000).
To reflect seasonal variability of precipitation, we fit separate models for each month, judging

the conditions within each month to change little enough to be considered stationary.

In Section 2, we discuss applicability of the univariate TPT model for the joint occur-
rence/amounts modeling,.
In Section 3, we describe two autoregressive models for the daily precipitation amounts. In

Section 4, we present the results of the model application to our study areas.

2. Preliminary model fitting and statistical issues of
precipitation generation

The multivariate normal distribution N (p, V) for a vector x of dimension d, mean p

and variance matrix V has the density
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We can use the same distribution for describing both the intensity (the amount of precipita-

tion on wet days) and occurrence (dry or wet days) simultaneously. Consider the precipitation



potential W, that falls below 0 if no precipitation has occurred on that day. For a positive
precipitation value R;, we infer W, = Ri/ A , where (3 is a transformation parameter depend-
ing on the skewness of the distribution, with higher values of 3 corresponding to heavier-tail

distributions for R.

The idea goes back to Stidd (1973) and is also discussed in Sansé and Guenni (2000) and
Stehlik and Bardossy (2002). The latter introduce the spatial-temporal distribution of W
based on weather patterns identified in the area, as inferred from atmospheric pressure
measured over a network of sites. However, their approach demands detailed weather infor-

mation. Our model is conceptually simpler and is comparable with Yang et al (2005).

The difference from Yang et al (2005) is that they introduce a special process for the precip-
itation occurrence. This is the classical approach in synthetic precipitation (Todorovic and
Woolhiser, 1975). In case of Yang et al, their model possesses some nice characteristics, but
it lacks the ability to fine-tune the occurrence process (the stations are assumed to be inter-
changeable within the area). Also, most approaches that separate occurrence and amounts
have to deal with the spatial intermittence effect (Bardossy & Plate (1992), Koutsoyannis
(2006)), where smooth transitions are required between wet and dry areas. For example,
Wilks (1998) notes that lower rainfall intensity is observed when more neighboring stations
are dry. This can be partially accounted for by using ad-hoc methods, but they result in a

more complex model.

Otherwise, our modeling concept is somewhat similar to the GLM’s employed by Yang et al
(2005) and Furrer and Katz (2007). To model the interactions between stations we introduce

multivariate autoregression (MAR) terms that link the precipitation potential for the day ¢



and site 7 to the potential for the previous day (or days) for all sites.

We would like to investigate the feasibility of using the TPT normal distribution for the
simultaneous occurence/intensity modeling. First, we will examine how the univariate TPT

represents precipitation amounts.

a. TPT model fit to empirical data

Many authors used different distributions to describe precipitation amounts. Notably,
Wilks (1999) uses mixtures of exponentials, Yang et al (2005) and Furrer and Katz (2007)
use transformed Gamma distributions etc.

Here, we check the validity of the TPT normal distribution for daily precipitation amounts

data, one month at a time.

To assess the fit, we produce the empirical CDF plots for the actual data, overlaid with the
fitted TPT-model CDF. (The empirical CDF, or cumulative distribution function, F(x) is

the proportion of days for which the precipitation < x.)

The parameters fitted are the normal distribution mean p, standard deviation o and the
transformation parameter 3. Some examples of the plots obtained are shown in Fig.6 and
Fig.7. These plots also show the precipitation probability at the same time, which is given
by P(R > 0) =1 — F(0). We can conclude that the TPT fits the data satisfactorily, even
though the assumption that the rainfall distribution is constant for different climatic condi-
tions is hardly going to be satisfied. Also, the TPT normal distribution applies to different

spatial scales, both the single site (Fig.6) and the total over all sites (Fig.7), albeit with



different parameter values. The estimated parameter values for these distributions are given

in Table 1. For example, the values of u and (3 are higher for the total precipitation.

In addition, we note that rounding of the precipitation values (in the present data set they
are rounded to the closest 0.01 inch) poses some difficulties, and the fitted parameters are
noticeably different with and without taking rounding into account. This is especially im-

portant for the precipitation values close to 0.

b. Challenges of modeling and statistical tools used for assessment

Some descriptive statistics for both multisite occurrence and intensity were offered by
Wilks (1998). In his opinion, a successful synthetic precipitation generator should match
these statistics with those of real precipitation. However, this task is extremely difficult. It

is not enough to generate single-site (univariate) precipitation values well.

A difficulty in modeling multi-site precipitation can be illustrated by the following “cor-
relation inversion” effect. This was observed when computing lag-1 cross-correlations of
precipitation between sites. For NY and MN study areas, we observe that high lag-1 cross-
correlations from site ¢ to site j are accompanied by low lag-1 cross-correlations from site j

to site i. See Fig.3 for the MN study area.

This effect might partially be explained by the general movement of weather systems in the
direction from West to East. This systematic movement will be addressed in Section 3.a. On
the other hand, this effect was not observed for CO study area (Fig. 4). Also, the statistical

relationship between sites is not completely determined by their locations. Measurements



for some pairs of sites exhibit fairly high lag-1 cross-correlations at a distance, while the
others do not, and this effect is surprisingly stable over different months. See for exam-
ple, Fig.5. This idiosyncratic behavior presents a considerable difficulty in modeling, and
also in producing high-resolution precipitation plots. This is the reason we focus on lag-1

cross-correlations.

3. Autoregression models using TPT

We may start with a simple single-site autoregression, in the form of a state-space model

Zy=rZi1+§

Wiy=pu+ 2+ ¢
Here, the first equation is an evolution equation involving “states” Z; and the second one is
the observation equation (of course, only positive values of W are observed directly), and ¢,

represent transient effects (white noise).

One attraction of using a linear model is that other terms (covariates) can be easily added:
time trends, elevation, some global climate index like El-Nino Southern Oscillation (ENSO),

etc.

To account for dependencies between sites, we will introduce to variants of this model: one

is area-based (“Convolution model”) and the other is site-based (“Multisite model”).



a. Convolution model

In order to convey large-scale spatial information, we might use a convolution model.
First, we will make a regular grid over the study area, and consider the area-averaged values
of precipitation potential, 8;, over the grid nodes i = 1, ..., m. (See Section 3.b below for the

explanation of terms in the equation.)
0; =100, 1 + &, (1)

Then, the fitted values of 8; will extend to the sites Z; via a convolution method described
by Higdon (2007),

Zy= > (di)0 (2)

i=1,....,m

where d;; is the distance between grid location ¢ and site j, the kernel function is the Gaussian

P(x) = exp(—x/(20?)), suitably normalized so that -, 4(dy) = 1.

The equations (1) and (2) are coupled with the observation equation
W, =7Z,+S +e¢,

where S are the Site effects, representing the average precipitation potential values at par-

ticular sites. The residuals g; are assumed to be A/(0, 7°I).

As an example, we will consider a two-node grid (m = 2). For MN data, this is shown in
Fig.2. If there is any persistent movement of weather systems in a direction between nodes,
it should be reflected in the ry coefficients. We indeed observe this behavior over all months

except November and December in MN, and all the time in NY, see Section 4. Not observed



over Colorado.

Further refining the grid, we can take into account smaller-scale spatial information. The
convolution model also makes it easy to interpolate precipitation values over the entire study
area, which should be important for applications. However, due to the idiosyncratic behavior

of correlations between sites, we cannot hope to reproduce them very well with this model.

b. Multisite model

This model focuses closely on reproducing covariances and lagged cross-covariances be-
tween sites, including correlation inversion effect. Consider multivariate autoregression

(MAR)
2y =17, 1+ £t
(3)
W;=%7Z;+8S + ¢,
where Z; is a vector of precipitation potentials at the time ¢, r is an N x N matrix with
(possibly complex) eigenvalues A; such that |\;| < 1, for all ¢. This ensures that the process

Z is stationary. Innovations in the model, §,, are multivariate normal with mean 0 and

variance matrix V.

Note that the number of parameters in the model describing r and V¢ is N? + N(N + 1)/2, this
exactly equals the number of parameters in the zero- and first-order autocovariance matrices of
the process Z, 20 and 3. Thus, if f]o and 31 were known, we could fit the parameters in (3) as
follows:

I‘T = 25121, Vs = ijo — I'i]oI‘T (4)
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However, in reality the values of Z are generated according to the Gibbs sampling algorithm and

then we get samples from conditional posterior distributions of r and V¢. For example,
IOy

The multisite model does not directly account for site locations. Spatial information may
still be used for between-site interpolation in the way described by Wilks (2008). One may
expect some benefit in combining multisite model and convolution model as a way to obtain

a high-density precipitation simulator.

c. Fitting the models

The models are fitted using the Bayesian approach, via the Gibbs sampler. See, for
example, Gelman et al (2003). This is a powerful approach, just as needed due to a large
number of missing variables (negative W values) and a complex hierarchical model structure.
One advantage of the Gibbs sampler is that various parameters and missing variables are
fitted in independent blocks, based on FCP’s (full conditional posteriors). The FCP are
defined as conditional density (or, for discrete random variables, their conditional probability
mass function) of some model variable, given all the other model variables combined. The
variable of interest is drawn from its FCP, based on current samples of all other variables.
Then, we move on to another variable etc. The process is repeated until the distributions are
determined to have converged, and then is run long enough to obtain an MCMC (Markov
Chain Monte-Carlo) sample from the joint posterior distribution of all model variables and

parameters. See Appendix for more information.
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4. Results

a. Convolution model

The results for Convolution model over MN study area are presented in Table 2. Note
the asymmetry in the estimated ry coefficients. They indicate movement in the West-East

direction. For example, the estimates for August are

0.402 —0.144 0.542 0.087
r = s V£ =

0.236 0.323 0.087 0.627

The covariance matrix of 8, 3, and the lag-1 cross-covariance, i]g, implied by these estimates

and equations (4) are

) 0.648 0.125 . 0.243  0.193
S = . =
0.125 0.762 ~0.059 0.276

Or, in terms of lag-1 cross-correlation,

) 0.374 0.275
1=
—0.085 0.362
This implies persistence in day-to-day area potentials, and also movement as the value on
the Day t at the Western node (6,) is positively correlated with both Western and Eastern
nodes on Day t+1 (0.374 and 0.275, respectively); but the value on the Day ¢ at the Eastern
node () is only positively correlated with the Eastern node on the next Day.

We could have also used grids with more nodes, but for them, the coefficients are far less

interpretable. Also, this approach does not address the idiosyncratic behavior at the sites.
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b. Multisite model

We fit the Multisite model for several months in each study area. We assessed the fit
primarily using three statistics: the average daily simulated precipitation at the sites, covari-
ances between daily (square-root transformed) precipitation at the pairs of sites, and lag-1
cross-covariances. Note that we do not aim for the exact replication of the site statistics, like
means etc. This would mean overfitting our model, which in turn might produce simulated

monthly total precipitation with unrealistically small variability (Katz and Parlange, 1998).

Examples of the multisite model simulated means, compared to real results, are shown in
Fig.8. To give an idea about variability, we added horizontal intervals showing middle 90% of
the sample of 100 50-year simulated means. They are in good agreement with the observed

means.

The covariance and lag-1 cross-covariance patterns are reproduced fairly well. However,
synthetic covariances tend to have higher values, as seen in Fig.9a. When we consider the
covariances for the occurrence process only (that is, 0 if no precipitation, and 1 if there is
precipitation), the agreement becomes much better (Fig.9b). This might serve as an indica-

tion of a certain discrepancy between the occurrence and intensity processes.

Compared to the Convolution model, the residual standard deviation 7 is greatly reduced,
for example from 0.456 to 0.202 for July, MN, and from 0.238 to 0.067 for January, CO! This

shows that only a little portion of between-sites spatial-temporal dependence is explained

13



by the systematic movement described in previous Section.

Wet spells (durations of consecutive days for which precipitation was observed) were rep-
resented adequately by this model. However, the dry spell distribution have differed from
empirical data. One possible way of dealing with this is to introduce dry spell durations
directly into the model. We have implemented this in a form of a region-wide dry spell.
Namely, whenever a dry spell starts (that is, all the sites in the area have 0 precipitation),
we can model its length by using either a parametric or the empirical distribution of dry
spell lengths. After ending the dry spell, we will resume the normal regime given by eq.(3),
which will have been re-fit to the wet-spell data fragments. Examples of this correction are
given in Fig. 10.

Another option is to introduce two or more weather regimes (for example, dry and wet
regimes), each with its own multisite model. This approach is reminiscent of Stehlik and

Béardossy (2002) and Apipattanavis et al (2007). It awaits future testing.

5. Summary

We proposed a new precipitation generator based on truncated and power-transfromed
normal distribution, with the spatial-temporal dependence represented by multivariate au-

toregression.

This generator integrates the occurrence and amounts processes, thus poised to overcome the
spatial intermittence problem. It also gives realisic spatial behavior, not only for covariances

between sites, but also for lag-1 and cross-covariances. The differences between occurrence

14



and amounts processes do not appear to be systematic and can be minimized through the

introduction of additional dry spell periods.

The generator is conceptually simple. The parameter values should be estimated using
computationally expensive Gibbs sampler; however, once the values are fitted, the precipi-
tation sequences can be generated straight from equation (3) at very little cost. This could
be an advantage over non-parametric approaches that require to keep the entire historical
precipitation record. Also, non-parametric approaches are harder to implement when the

precipitation record is short, the station locations are changing, or data are missing.

Another advantage of a linear model is that exogenous variables can be incorporated easily.
These might include time trends, as well as global and regional climatic information, eleva-

tion etc.

Several extensions of the described algorithm appear promising. One, introduction of two or
more weather regimes on which the multivarite model would be conditioned. This could be
useful for downscaling General and Regional Circulation Models (Wilby et al, 1999). Two,
it could be useful to adapt our algorithm (possibly combining the Convolution and Multisite

approaches) for high-resolution simulation.

Also, further testing and application of this algorithm (for example, in reservoir studies) is

desirable.
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APPENDIX

Details of MCMC model fitting

In this section, we describe details of the model fitting via the Gibbs sampler, full con-

ditional posteriors (FCP’s) etc.

The FCP is defined as a conditional distribution of one parameter (or a block of parameters)
given all the other parameters and variables in the model. The unknown parameters and
variables are given some starting values. Gibbs sampler is then implemented in iterating
draws from FCP’s of one parameter at a time, then cycling through the rest of parameters,
and repeat the procedure. This usually results in a correlated sample from the joint distribu-
tion of the parameters of interest, called Markov Chain Monte-Carlo (MCMC) sample. After
an initial period of convergence, we can use this sample (thinned out, if necessary, to avoid
autocorrelation) for the inference about the parameters. We can use, for example, sample
means as point estimates, or medians in case of skewed distributions. We can also produce
Bayesian credible intervals by taking quantiles of the MCMC samples. The estimates are
subject to Monte Carlo error, but we can make this error small by obtaining large enough

samples.

For example, the FCP for the transformation parameter 3, f(5|{Ri},{Zs},7) is propor-

16



tional to

H 1 Ré_l exp (R - Zy)?
/6 (3

R;:>0

The details of fitting the area potentials 6, in the convolution model are discussed in Higdon
(2007). Most of the other FCP’s we used are well-known in statistical practice and are

discussed in Gelman et al (2003).

A program in R statistical language (R Development Core Team, 2008) was written to

implement the Gibbs sampler.
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Fic. 5. Idiosyncratic lag-1 cross-correlations for NY area, months May- October. Gray

arrows: lag-1 cross-correlations above 0.45, black arrows: lag-1 cross-correlations above 0.55
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TABLE 1. Fitted TPT normal distribution values

a) Daily precipitation for sites 1-6, August, CO

Site 1 o [ | precipitation probability
1 | -0.115 0.418 2.008 0.392
2 | -0.139 0.37 1.856 0.353
3 | -0.199 0.393 1.349 0.306
4 -0.23 0.463 2.013 0.31
5 | -0.039 0.337 1.68 0.454
6 -0.11 0.382 1.736 0.386

b) Total daily precipitation for all sites, months 1-12, MN

Month L o [ | precipitation probability
1 0.336  0.696 3.254 0.685
2 0.267 0.712 3.411 0.646
3 0.405 0.835 3.425 0.686
4 0.595 1.037 2.843 0.717
5 0.791 1.148 2.564 0.755
6 1.027 1.121  2.67 0.82
7 091 1.133 2.585 0.789
8 0.79 1.191 2.697 0.746
9 0.623 1.098 2.824 0.715
10 0.261 1.092 3.084 0.595
11 0.303 0.845 3.478 0.64
12 0.339  0.67 3.491 0.693
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TABLE 2. The parameter estimates for the Convolution model, MN study area

Month 1 2 3 4 ) 6
T 0.198 0.208 0.252 0.287 0.334 0.403
S —0.203 —0.255 —0.353 —-0.266 -0.256 -0.191
164 1.844 1.841 1.815 1.812 1.882 2.003
ry 0.377 0.093 | 0.483 -0.046 | 0.530 -0.031 | 0.519 -0.061 | 0.482 -0.102 | 0.386 —0.044
0.191 0.331 0.157 0.373 | 0.121 0.360 | 0.207 0.344 | 0.214 0.392 | 0.200 0.328
Ve 0.113 0.046 | 0.177 0.022 | 0.224 0.073 | 0.343 0.034 | 0.381 0.000 | 0.488 0.038
0.046 0.139 | 0.022 0.181 | 0.073 0.279 | 0.034 0.318 | 0.000 0.436 | 0.038 0.425
Month 7 8 9 10 11 12
T 0.456 0.442 0.351 0.308 0.254 0.207
S -0.315 -0.378 -0.315 -0.435 -0.336 -0.245
8 1.986 2.022 2.091 1.95 1.9 1.918
ry 0.348 -0.09 | 0.402 -0.144 | 0.513 -0.086 | 0.621 -0.056 | 0.459 0.095 | 0.493 0.055
0.145 0.273 | 0.236 0.323 0.179 0.37 0.147 0.426 | 0.093 0.447 | 0.022 0.445
Ve 0.48 -0.005 | 0.542 0.087 | 0.526 0.050 | 0.460 0.061 | 0.197 0.071 | 0.115 0.039
-0.005 0.711 | 0.087 0.627 | 0.050 0.346 | 0.061 0.326 | 0.071 0.319 | 0.039 0.193
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