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* understand spatio-temporal properties of #q mean potential, and year-specific potential 6. éflﬁk ale‘i%ré:g;)s" average transtormed precipitation sqrt(R)
precipitation Estimation: Bayesian approach - —
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Computation using Gibbs sampler requires finding full
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Gauge precipitation R is related to a hidden variable W so
that [1]:
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Markov Chain Monte-Carlo algorithm through
{ W =RYS R>0 Gibbs sampling:
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parameters and the data:

Thus, W is power-transformed and assumed to be During wet periods, 0; tracks sqrt(R). During dry periods

The algorithm obtains (correlated) samples from
parameters of interest.

negative when the observed precipitation is 0. p(X; | X1, Xi1, Xty ooy X, data) (precipitation probability < 50%), however, 6; becomes 2_

Practically, W < 0 is treated as missing and is imputed in negative. 1 | :

our model fit. 2.Cycle repeatedly for j = 1,...,n g 27 .

The transformation and imputation of W are done to Fitted values of seasonal potential 1, (green) against ;- M/\/M %/\ \/\[\MVMJ

insure W has normal distribution (we have used 3 = 2). average transformed precipitation sqrt(R).

Normality enables us to use traditional techniques like
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kriging. For example, FCP for W, is just R;t/ ” when R; > 0, and is ) .
' pitation potenti runcte Normatimen - 7, stsev=r)when =0 = | |l bl °°-
W will be called precipitation potential - SR 1171 11 e R o
Use for prediction: to predict probability of precipitation | | ¢ © y &
at site j, time ¢, generate samples of W;; and count the 5 - : .
Model - | proportion of samples with W, > 0. 2 o e R A wn ) aug .
The: W.Values are ﬁti‘ed into a spatio-temporal model, Benefits: accounts for all sources of incertainty, allows | | | | s~ A
which is a co.mbma’uon.of pgrely ter.n}.)ore.ll | multi-level models, expandable/modular code ° 100 20 300
(autoregressive) for region-wide precipitation potential 6;, . . . days | o
and spatial (range/nugget) model for gauges Challenges: computationally intensive Predicted vs. Actual precipitation frequency.

This plot illustrates the main difference between simply

1 = Station, ¢ = Day, averaged precipitation, and the use of hidden model. In

d = Day of year (1,...,365) corresp. to ¢ Results a dry season (June), the precipitation potential is large Conclusions
Level 1 Wz’t — Zz’t + Vjy Stlldy Area: southwestern Colorado, 20 SNOTEL gauges Il\l/?galinl;e, Whlccih results in ;i:lery :}?1‘6 actual preC1plia(‘E;)n * Slmply Computlng average precipitation,
« ” . dai Sitati _ uch bigger discrepancy than the one seen in sqr ,
nugget” vy ~ Normal(0, 7°) Data: daily precipitation for 16 years (1990-2006) (black I ffs)' pancy 1 although convenient, may not be the best
Level 2 Zip = 0 + € ¢ % choice for spatio-temporal models.
vector €; ~ Normal(0, c°V 72
t (0,5eV) o Estimated probability of precipitation (via Bayesian * No need for separate models: one for the
Level 3 Opy1 = par1 + 70 — pa) + & o kriging), day 95 occurrence and one for the observed
autoregression & ~ Normal (0, Jg) .
amount.
eve pa =32 arcos (Fi) + 32 bisin (555 Provides a tough test for our model since only 35% ot —
seasonal via Fourier series observations are non-zero. § B Future work
where: Estimates (percentiles) of model parameters: — * Larger region/ use of multivariate ¢
* V is covariance matrix corresponding to exponential 2.95%| 25% [ 50% | 75% 97.5% S _ * Incorporate radar & satellite data
model with range ¢: T 0.335 0. 338 0.339 0. 340 0. 343 T
V;; = exp(—Dist;; /o) O 0.290 0. 294/0.297 0. 299 0. 304 2 _
: : o 0.214 0. 220 0.223 0. 226 0. 232 3 | References | ) |
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