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Objectives:
* understand spatio-temporal properties of

precipitation
* unify ”mean” calculations and probability

calculations for quantities that frequently
equal 0

Idea:
Gauge precipitation R is related to a hidden variable W so
that [1]:

{

W = R1/β, R > 0
W < 0, R = 0

Thus, W is power-transformed and assumed to be
negative when the observed precipitation is 0.
Practically, W < 0 is treated as missing and is imputed in
our model fit.

The transformation and imputation of W are done to
insure W has normal distribution (we have used β = 2).
Normality enables us to use traditional techniques like
kriging.

W will be called precipitation potential.

Model
The W values are fitted into a spatio-temporal model,
which is a combination of purely temporal
(autoregressive) for region-wide precipitation potential θt,
and spatial (range/nugget) model for gauges

i = Station, t = Day,
d = Day of year (1,...,365) corresp. to t

Level 1 Wit = Zit + νit

“nugget” νit ∼ Normal(0, τ 2)

Level 2 Zit = θt + εit

vector εt ∼ Normal(0, σ2
εV)

Level 3 θt+1 = µd+1 + r(θt − µd) + ξt

autoregression ξt ∼ Normal(0, σ2
ξ)

Level 4 µd =
∑

ak cos
(

2πdk
365

)

+
∑

bk sin
(

2πdk
365

)

seasonal via Fourier series

where:
* V is covariance matrix corresponding to exponential

model with range φ:
Vij = exp(−Distij/φ)

* νit is the nugget (white-noise) variation, and εit is the
spatially correlated variation in precip. potential.

* The model distinguishes between ”season normal”
µd mean potential, and year-specific potential θt.

Estimation: Bayesian approach
?
Computation using Gibbs sampler requires finding full
conditional posteriors (FCP)
Let (X1, X2, ..., Xn) be the vector of all unknown
quantities and parameters.

Markov Chain Monte-Carlo algorithm through
Gibbs sampling:
1. Draw a sample from FCP of one Xj given all other

parameters and the data:

p(Xj | X1, ..., Xj−1, Xj+1, ..., Xn, data)

2. Cycle repeatedly for j = 1, ..., n

The algorithm obtains (correlated) samples from
parameters of interest.

For example, FCP for Wit is just R
1/β
it when Rit > 0, and is

truncated Normal(mean = Zit, st.dev.= τ ) when Rit = 0.

Use for prediction: to predict probability of precipitation
at site j, time t, generate samples of Wjt and count the
proportion of samples with Wjt > 0.

Benefits: accounts for all sources of incertainty, allows
multi-level models, expandable/modular code

Challenges: computationally intensive

Results

Study Area: southwestern Colorado, 20 SNOTEL gauges
Data: daily precipitation for 16 years (1990-2006)

Provides a tough test for our model since only 35% of
observations are non-zero.

Estimates (percentiles) of model parameters:
2.5% 25% 50% 75% 97.5%

τ 0.335 0.338 0.339 0.340 0.343
σε 0.290 0.294 0.297 0.299 0.304
σξ 0.214 0.220 0.223 0.226 0.232
φ (range) 81.0 85.6 87.9 89.9 96.6
r (autocorr.) 0.761 0.776 0.782 0.789 0.803

Fitted values of θt (blue) and seasonal µd (red), first 300
days; against average transformed precipitation sqrt(R)
(black lines).
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During wet periods, θt tracks sqrt(R). During dry periods
(precipitation probability < 50%), however, θt becomes
negative.

Fitted values of seasonal potential µd (green) against
average transformed precipitation sqrt(R).
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This plot illustrates the main difference between simply
averaged precipitation, and the use of hidden model. In
a dry season (June), the precipitation potential is large
negative, which results in very rare actual precipitation.
Much bigger discrepancy than the one seen in sqrt(R)
(black lines)!

Estimated probability of precipitation (via Bayesian
kriging), day 95
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Markov Chain output: φ (range parameter, km)
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Cross-validation

Predicted precipitation probabilities (first 100 days):

Station 5 Station 8

Predicted vs. Actual precipitation frequency.

Conclusions
* Simply computing average precipitation,

although convenient, may not be the best
choice for spatio-temporal models.

* No need for separate models: one for the
occurrence and one for the observed
amount.

Future work
* Larger region/ use of multivariate θt

* Incorporate radar & satellite data
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