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Abstract 2 Model

A time-varying regression model is considered, based \(/)Ve fit time-varying regressions to the square-root transformed

monthly precipitation data from gauge measurements. _lsﬁ%ues of precipitatiorr’;, for Station; and Month:
model accounts for orographic effects, that is elevationeesad t t ¢ t ¢
s > , o Pyo= B0+ B1E; + BN + B2 4 Bycos(Aj) +
pectof the terrain. The study area is NCDC climate division ** tﬁf) BE; 4 BN; + 0525 + Facos(4;)
2 in a mountainous area in northern New Mexico. We assess+555m(Aj) + Smod(t,12) + BsorLt + T + €5,
spatio-temporal variability and also trace the dependence of j=1L.,N, t=1..T (1)

precipitation on EI Nifio/Southern Oscillation (ENSQO) index.
Here,E; andN; are easting and northing coordinates of a sta-

tion (in km), Z; is the elevation of a statiorfy,;,oq(:,12) are

seasonal corrections (January through December, constant for
1 Introduction each month throughout the study period). The tdrpton-

tains the value of SOI (Southern Oscillation Index, reported at

i http://www.bom.gov.au/climate/current/soihtm1.shtml) which
In many studies (see, e.g. Gershunov and Barnett (1998} serve as a proxy for ENSO.

a question was raised of teleconnections of ENSO (El

Nifio/Southern Oscillation) with precipitation in SouthwesiFhe termss, cos(A4;) and s sin(A;) account for the “mois-
ern US. In Guan, Vivoni and Wilson (2005), an instant of su¢tire flux direction” (MFD) effect (see Guan, Wilson and
teleconnection was reported. In particular, they looked at thidakhnin (2005)). They provide auto-search for the MBD
categories of years (ENSO High, Low and Neutral) and oWith

served, for example, a positive precipitation anomaly for High

and Neutral ENSO in the winter. Bacos(A;) + Bs sin(A;) = Bupp cos(Aj — W) (2)

A question was also raised about the relationship of preciphe term/yg cos(A; — W) captures interaction of the MFD
tation to PDO (Pacific Decadal Oscillation). However, at thgith the terrain aspect;, which is the gradient direction of
time scales for the PDO (decades) we don't have enough dataiterrain at statioy, averaged in &km window. When the
to reliably assess this relationship. moisture is coming up slope (the directionsyfandV’ coin-

This work attempts to assess ENSO influence on a more &gg)’ this res_ults in (.ax'Fra precipitation. The teWhinferred
tistical footing by capturing the spatiotemporal variability off our model is a statistical average over potentially many pre-

precipitation in the mountainous region in northern New Meﬁlpltatlon events.

ico. The regiqn is chosen because it has a great impacF onifh@nandkumar (2005), the random field (-) was intro-
water supply in th? state of New Mexico. Also, mountainoced, varying over the region. However, for our purposes,
terrain affects precipitation in a certain way. the region is fairly small, therefore we assume here at

ls constant, and the relation (2) is used instead. However, for

arger regions, working with the random field MFD will be
%r_itical.

The study region corresponding to New Mexico NCDC cl
mate Division 2 is shown below. The NCDC rain gaug
provide direct measurement of precipitation over various |

cations in the area. We picked 33 stations for which mostiie terms with3; andg, account for linear Moisture Gradient

uninterrupted records are available from 1970 to 2003. Th@G) throughout the region. It does not necessarily coincide
data are total monthly precipitation measurements at these @figh MFED.

tions.
The termsr; are random effects for the monthande;; are

residual errors (possibly correlated).

Instead of actual precipitation measurement we have used
square-root transformed precipitatidy,. It is a popular
choice of transformation and attains near normality of the
transformed values. The covariatBs N, Z are coded; that

is, they are scaled to have mean 0. This helps eliminate un-
wanted correlations between regression coefficients.




2.1 Time-varying regression coefficients random-effect variance?.

The coefficients3;, k£ = 0,1,...,5 depend ont. However, Sampling of AR coefficients; from equation (3) was done
we allow for some degree of smoothing by introducing thesing a Metropolis step (see Kim et al. (1998), also for fitting
autoregressive evolution equations, for each k)

tr1 t ¢ _ _
w = ke re(B — ) +AB, t=1,..,T—-1 (3) 4 Results

(note thatBso; is not time-varying).
The increments\3! are assumed to h&(0,¢?) with addi-
tional variance parametegs, k = 0, ..., 5.

The results of an MCMC simulation are presented below. We
used the burn-in of 0 iterations and number of MC replicates
M = 50,000, with every 50th selected for the output.

Note thatrq = 1 and o = 0, for identifiability purposes.
This way, the mean precipitation value for the entire regi
for a given montht is split into a slow-varying componep,
and a random perturbatiam.

First, a plot of data and the model fit are shown for the first
920 months

2.2 Other parameters

sqrt Precipitation
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!

The seasonal$,,,,(:,12) are currently computed as a simple
average of the”;, values. Later, we hope to include them into ‘ ‘ ‘ ‘ ‘ ‘ ‘
the MCMC iterative scheme. 0 20 40 60 80 100 120

The residualg ;; are assumed to be temporally independent. Month

It is well known that the spatial dependence exists (e.g. Guan,
Wilson and Makhnin (2005)). We describe spatial dependence
for €, based on exponential covariance model

Figure 1: The data and model fit

Next, the MCMC output fofiser is shown. The graphs shown
Cov(ei,ej0) = o2 lexp(—dist(i, §)/¢) + w?] include a “trace plot" of MC samples, an autocorrelation plot
and a histogram of MC samples.
wheredist(i, j) is the Euclidean distance between stations
andj. Currently we fit the values of the range= 30 km and Bso
relative nuggetv? = 1/3. Later we will introduce the estima-
tion of ¢, w? into the MCMC sampler.
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Some data were missing. In the MCMC framework, it is §-
straightforward to impute the missing data using full condi- -
tional posteriors, through equation (1). g
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3 MCMC fit Index Lag Bsor

The parameters in the model are fitted using Markov Chain Figure 2: The MCMC output f0Bso:

Monte Carlo approach. It is implemented via Gibbs samplghese clearly indicate the significant negative relationship

The full conditional posteriors (FCP) for the parameters gsgtween the SOI index values and precipitation.
indicated below.

The FCP for the entire block df3f}, ¢ =1,...,T, k= Next, you can see the posterior means for coefficights
0,...,5, given all the other parameters from equations (fg|evation), for all months.

and (3), can be computed using forward-filtering backward-
sampling (FFBS) approach described in West and Harrison _ |
(1997).

B3
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The variance parametey$ are fitted using inverse chi-square
(conjugate) prior with the location parametgr and v, de- <
grees of freedom, similarly to Kim et al. (1998). Then, the
FCP distribution ofs? is inverse chi-square with the location = 1

paramete((k + ZtT:’ll(Aﬂt’“F) J/(vg+T—1)andy,+T—1 .

degrees of freedom. We can choose informative priorgfor 0 100 200 300 400
if the shrinking of regression parameters is desired. Month

Similar analysis can be done for residual variamc¢eand Figure 3: Posterior means gf, for all Monthst.



Consistently positive values fgi; are indicative of the well-
documented relationship between elevation and precipitation.

A clearly expressed seasonal behavior is observedfoas Posterior quantiles of variance parameters:

well as MG and MFD:

Figure 6: Posterior histograms of Moisture Gradient (MG)
for select months

parameter, 5% 25% 50% 75% 95%
o 2.828 2.848 2.863 2.878 2.897
N #] '“”5 . or 2.994 3.108 3.182 3.266 3.402
D PSSR Y qo 0.294 0.348 0.387 0.450 0.578
s Hi iié'il A TERRIER! LI PR @ 0.062 0.064 0.065 0.067 0.069
- 5"§§§§!'si IR g”mmmi % 0.063 0.065 0.066 0.068 0.070
SRR L R T ML B L LA e 0.846 0.958 1.062 1.149 1.281
e ediirelires Tl qa 0.236 0.260 0.281 0.306 0.349
PR ot ot s 0.244 0.270 0.294 0.319 0.360
Figure 4: Seasonal behavior of coefficigljt(elevation), MG pgsterior guantiles of mean parameters:
and MFD
parameter, 5% 25% 50% 75% 95%
For example, the elevation effects are more significant dur- ., -0.004 0.002 0.005 0.009 0.015
ing the Winter months (higher regression coefficient). Mois- 5 -0.005 -0.001 0.002 0.004 0.009
ture Flux Direction fluctuates in a narrow band between p3 3.951 4.082 4.174 4276 4.394
southerly, for Summer months, to south-westerly, for Winter -0.637 -0.591 -0.560 -0.530 -0.488
months. 145 -0.200 -0.153 -0.121 -0.090 -0.048

Histogram of MG

Histogram of MFD

The values ofuy and us are indicative of the MFD value

staying in a narow band (see Figure 4 above)

3 Autoregression coefficientss and r; were significantly
g 3 g 8 different from 0. This indicates predictability ¢f regression
§ Q :% coefficients for elevation and MFD, likely due to seasonality
£ g Eoo of the these effects (see Figure 4).

T T 1T 1
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R code and the data used are available from
http://www.nmt.edu/"olegm/JSMO06/

Figure 5: Histograms of posterior means for Moisture Flux 5 Conclusions

Direction (MFD) and Moisture Gradient (MG), all months. . i i ) o
A time-varying regression model was introduced, describing

The results indicate a consistent near-southerly MFD for m§8¢tial and temporal variability of the precipitation in a given
months (about80°, clockwise with0° pointing North), and area. A fairly regular seasonal behavior is observed for some

a somewhat less consistent Moisture Gradient. It would %Igments in our model, in particular, Moisture Flux Direction.
interesting to further investigate the dependence of MG on the

SOl phases. There is a significant negative influence of SOI values on the
average monthly precipitation. Thus, it confirms the hypothe-
sis of teleconnections between ENSO and the climate in north-
i A1 ¥4 [l emnNewMexico. This has a potential significance for predict-
oo mom oo mow oo mow ing water supply, especially in semi-arid Southwestern US.
] ] e b 8T 6 Acknowledgments
Thanks to Devon MacAllister for collaborating on R pro-
. grams, and Huade Guan for useful discussions.
9 I od din o8 1l
References
fﬂﬁl ‘ Si y—i_L ‘ Sim Anandkumar, S. (2003)idden Random Field Modeling of Orographic Ef-

fects on Mountainous Precipitatipindependent Study Report, New
Mexico Tech.



Gershunoy, A., and T. P. Barnett (1998), “Interdecadal modulation of ENSO
teleconnections'Bull. Am. Meteorol. So¢79, 2715-2725.

Guan, H., Wilson, J., and Makhnin, O. (2005) “Geostatistical Mapping of
Mountain Precipitation Incorporating Auto-Searched Effects of Terrain
and Climatic CharacteristicsJournal of Hydrometeorology6, 1018-

31.

Guan, H., E. R. Vivoni, and J. L. Wilson (2005), “Effects of atmospheric
teleconnections on seasonal precipitation in mountainous regions of the
southwestern U.S.: A case study in northern New Mexi€@#pphys.

Res. Lett.32, L23701

Kim, S., Shephard, N., and Chib, S. (1998) “Stochastic \olatility: Likeli-
hood Inference and Comparison with ARCH ModeReview of Eco-
nomic Studiess5, 361-394

West, M., and Harrison, J. (199Bpyesian forecasting and dynamic models
Springer-Verlag, New York.



