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ABSTRACT

This work uses a Markov chain Monte Carlo (MCMC) method to

model the moisture flux direction random field (MFD RF) for a mountainous

region. It builds on the approach originally proposed by Guan et al. (2005) in

their precipitation model named ASOADeK (Auto-Searched Orographic and

Atmospheric effects De-trended Kriging). The ASOADeK assumes the MFD

to be constant throughout the study region. However, our model allows for

non-constant MFD RF. It takes into account the influence of local orographic

and atmospheric effects on spatially correlated gauge precipitation data. It

combines linear regression with subsequent spatial interpolation (kriging). It

also performs ‘all in one’ estimation of regression and other parameters using

a Gibbs sampler. We tested the model with the precipitation data collected

for the mountainous region of semi-arid northern New Mexico. The results

reported include the estimated MFD random field, as well as detailed pre-

cipitation maps. Knowledge of MFD RF may offer insight into the region’s

precipitation patterns.



ACKNOWLEDGMENT

Many people deserve thanks for extending their help in whichever

way it was possible for them. I would like to first thank Dr.Oleg Makhnin, my

academic advisor. He has been very supportive and understanding and created

an ideal atmosphere for me to complete this project on a good note.

Let me acknowledge the fact that as a Mathematics graduate student

at New Mexico Tech, one has to complete considerable amount of coursework.

This gave me enough opportunities to know the teaching styles of eminent

professors like Dr.William Stone, Dr.Brian Borchers, Dr.Subhasish Mazumdar,

Dr.Rakhim Aitbayev, and Dr.Oleg Makhnin.

Life is different for an international graduate student, and there are

times when they need some moral support. I was fortunate enough to find

people like Dr.Stone, Dr.Aitbayev, Dr.Makhnin, and Emma (Mathematics de-

partment secretary) to whom I could talk about problems in my personal life.

Thanks to my fellow graduate students - Andrey Novoseltsev, Satya

Sai Vaddadhi, Qian Xia, Raphael Clancy, Christian Lucero, Don Clewett, Leny

Mathew, and Amber Polizzi. Some of them also helped me with their LATEX

skills.

As to personal friends beyond work, I could ask for none better than

Tushar Shitole, and Sujit Tatke. Whether it’s been trekking, a regular get-

together, or just tele-conferences, I’ve enjoyed it all! To my closely-knit Indian

ii



community at Tech with whom I have had a great time cooking, listening music,

celebrating festivals, and playing cricket. Special thanks to all my other friends

whose emails and chat sessions make me smile.

And of course, with all my heart I thank my parents, my family, and

my grandfather to whom this work is dedicated.

I would also like to thank Huade Guan for providing the DEM maps

and converting them to retrieve the aspect and elevation data, and Dr.John

Wilson for his suggestions, comments and interest in this project.

Finally, I gratefully acknowledge the initial concept of estimating hid-

den moisture flux direction random field using a Bayesian approach to my

advisor Dr.Makhnin.

Anandkumar Shetiya

This report was typeset with LATEX1 by the author.

1LATEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth’s TEX program for computer typesetting. TEX is a trademark of the
American Mathematical Society. The LATEX macro package for the New Mexico Institute of
Mining and Technology report format was adapted from Gerald Arnold’s modification of the
LATEX macro package for The University of Texas at Austin by Khe-Sing The.

iii



TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

1. INTRODUCTION 1

1.1 Details of ASOADeK . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. MODEL SPECIFICATION 9

2.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Geostatistical Model . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. HIDDEN RANDOM FIELD MODELING 18

3.1 Background on Markov Chain Monte Carlo . . . . . . . . . . . . 18

3.1.1 Monte Carlo Integration . . . . . . . . . . . . . . . . . . 20

3.1.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.4 The Metropolis Algorithm . . . . . . . . . . . . . . . . . 23

3.2 Estimation of Moisture Flux Direction Random Field . . . . . . 24

3.3 Estimation of Model Parameters . . . . . . . . . . . . . . . . . . 26

3.4 The Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . 31

iv



4. RESULTS 35

4.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 MCMC Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 One Complete MCMC Output . . . . . . . . . . . . . . . 37

4.2.2 Influence of γ . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.3 MFD RF Comparison . . . . . . . . . . . . . . . . . . . 42

4.3 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Cross-validation Using Simulation Data . . . . . . . . . . 43

4.3.2 Cross-validation Using Northern New Mexico Data . . . 44

4.4 Monthly Precipitation Map . . . . . . . . . . . . . . . . . . . . 45

5. DISCUSSION 52

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A. Some Probability Distributions 54

A.1 p-dimensional Multivariate Normal Distribution . . . . . . . . . 54

A.2 Scaled-Inverse χ2 Distribution . . . . . . . . . . . . . . . . . . . 54

B. Matlab Codes 55

REFERENCES 56

v



LIST OF TABLES

4.1 Regression parameter estimates for 3 different months . . . . . . 37

4.2 Variogram parameter estimates and acceptance rates for 3 dif-

ferent months . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 t-statistics and p-values using simulated data . . . . . . . . . . . 44

4.4 t-statistics and p-values using May data . . . . . . . . . . . . . . 45

vi



LIST OF FIGURES

1.1 Predicted values from ASOADeK model for February. Dark cir-

cles - SNOTEL sites. (Courtesy - Dr. Makhnin) . . . . . . . . . 6

4.1 Study Area in Northern New Mexico - A Division 2 DEM with

gauge stations (‘+’ indicate the SNOTEL gauges), and the pe-

riod of available data . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 One complete MCMC output for August - Markov chain values

and histograms of regression parameters β0 and β3. . . . . . . . 38

4.3 One complete MCMC output for August - Markov chain values

and histograms of regression parameters β1 and β2. . . . . . . . 38

4.4 One complete MCMC output for August - Markov chain values,

histograms, and Auto-correlation functions of regression param-

eter β4 and variogram parameter σ2. . . . . . . . . . . . . . . . 39

4.5 One complete MCMC output for August - Markov chain values

and histograms of variogram parameters ϕ and τ 2
R. . . . . . . . 40

4.6 One complete MCMC output for August - Moisture flux direc-

tion random fields (dashed line - constant ASOADeK MFD, solid

line - estimated MFD RF), log-likelihood, and Markov chain val-

ues for 2 observation sites. . . . . . . . . . . . . . . . . . . . . . 40

vii



4.7 Influence of γ’s - MFD RF’s for May for γ = 0.5, 2, 4, and 8

(dashed line - constant ASOADeK MFD RF, solid line - esti-

mated MFD RF). . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 MFD RF Comparison - MFD RF’s for February, April, June,

August, October, and December obtained using γ = 1 (dashed

line - constant ASOADeK MFD RF, solid line - estimated MFD

RF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9 Cross-validation results using 32 different sets of ‘discarded’ sites

for simulated data. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 Cross-validation results showing actual versus predicted values

for simulated data for γ = 0.5, 1, 3, 8. . . . . . . . . . . . . . . . 47

4.11 Cross-validation results using simulated data - Markov chain val-

ues, histograms, and Auto-correlation functions of regression pa-

rameter β4 and variogram parameter σ2. . . . . . . . . . . . . . 48

4.12 Cross-validation results using simulated data - Moisture flux di-

rection random fields (dashed line - true MFD RF, solid line -

estimated MFD RF), log-likelihood, and MCMC outputs for 2

observation sites. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.13 Cross-validation results using 36 different sets of ‘discarded’ sites

for May data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.14 Cross-validation results showing actual versus predicted values

for May for γ = 0.5, 1, 3, 8. . . . . . . . . . . . . . . . . . . . . . 49

viii



4.15 Cross-validation results using real data for May - Markov chain

values, histograms, and Auto-correlation functions of regression

parameter β4 and variogram parameter σ2. . . . . . . . . . . . . 50

4.16 Cross-validation results using real data for May - Moisture flux

direction random fields (dashed line - constant ASOADeK MFD

RF, solid line - estimated MFD RF), log-likelihood, and MCMC

outputs for 2 observation sites. . . . . . . . . . . . . . . . . . . . 50

4.17 Precipitation map for February obtained using kriging and γ = 0.5 51

4.18 Precipitation map for February obtained using ASOADeK (Cour-

tesy - Huade Guan). . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



This report is accepted on behalf of the faculty of the Institute by the following

committee:

Dr. Oleg Makhnin, Advisor

Anandkumar Shetiya Date



CHAPTER 1

INTRODUCTION

Mountainous regions have complex topography typically character-

ized by continuously varying elevation. Varying elevation is one of the factors

causing considerable difference in the climatic conditions throughout such re-

gions. While measuring precipitation in such regions, it is important to allow

for the local and precise climatic conditions prevailing at different elevations

because spatial variability of precipitation greatly influences many different

hydrologic and ecologic studies. Long-term averages of precipitation measure-

ments done using a limited number of gauges scattered throughout the moun-

tainous region are used to develop precipitation mapping products which can

estimate precipitation at other locations within that region. The objective of

this work is to test a method for developing such a product by taking into

account orographic1 factors like the terrain elevation, the terrain aspect, and

the moisture flux direction (MFD).

Several different models have been developed to estimate precipita-

tion with each one of them following some basic philosophy or combination of

various philosophies. For instance, there are simple models based on Theissen

polygon [9],[12], and inverse square distance [9] which do not consider spatial

1Orography is the science of mountains.
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covariance structure of precipitation data nor do they consider orographic and

atmospheric effects. Orographic factors like the terrain elevation and the ter-

rain aspect cause more precipitation on the windward side of the mountain

than on the lee side. The direction of gradient along the mountain topography

is given by the terrain aspect. Orographic effects on precipitation measure-

ment are well documented, see e.g., [2],[5]. Models based on kriging technique

[9],[15] take into account spatial covariance structure and yield better estimates

than the above simple models. But they too fail to address the relation be-

tween precipitation and orographic effects. Regression-based models provide a

partial solution to this problem by considering some orographic features but

ignoring spatial covariance. But there are models that consider both spatial

covariance and the climatic conditions, e.g., cokriging with terrain elevation,

and de-trended residual kriging [9].

PRISM (Precipitation-elevation Regression on Independent Slopes

Model) [4, 16], and ASOADeK (Auto-Searched Orographic and Atmospheric

effects De-trended Kriging) [9] are two precipitation mapping products devel-

oped especially for the mountainous terrains. They consider both the terrain

elevation and the terrain aspect which play an important role in determining

orographic effects. These products provide better precipitation estimates. The

downside to using PRISM is the need to have sufficient regional climatic knowl-

edge in order to obtain reliable estimates. In particular, to account for oro-

graphic effects, one needs to find the direction from which moisture comes, i.e.,

the moisture flux direction (MFD). Unlike PRISM, ASOADeK addresses this

difficulty by explicitly estimating the MFD. Also, spatial resolution of PRISM
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product depends on its input DEM (Digital Elevation Map) grid size [9]2.

1.1 Details of ASOADeK

ASOADeK uses a multivariate linear regression approach to produce

high spatial resolution precipitation maps. Regression step is done using the

following function:

Yi = β0 + β1Ei + β2Ni + β3Zi + β4 cos(Ai −W ) + Vi (1.1)

where Yi is the precipitation measured in mm at gauge i, Ei is the UTM (Uni-

versal Transverse Mercator)3 easting coordinate [17] expressed in km, Ni is

the UTM northing coordinate expressed in km, Zi is the above sea-level ter-

rain elevation expressed in km, Ai is the terrain aspect measured in radians,

W is the MFD measured in radians, Vi is the error term (a.k.a. residual),

and (β0, β1, β2, β3, β4)
′ = β are regression parameters to be estimated. Yi can

be a single precipitation event or a long term average of different precipita-

tion events. MFD was specifically introduced in the ASOADeK model for the

purpose of accounting for orographic effects due to moisture direction. Note

that equation (1.1) is linear in regression parameters β, but not in W . Equa-

tion (1.1) captures the local and regional climatic and orographic effects like

the effective terrain elevation, and the effective terrain aspect. However, to

avoid possible complications with nonlinear estimation for W , the mathemati-

2DEM’s used in our work are generated by the ESRI ArcMap GIS tool by Guan et al.
3There are 60 longitudinal projection zones and within each zone the tranverse Mercator

projection is used to give the easting and northing coordinates in meters. The UTM easting
and northing coordinates thus define a location within a UTM projection zone either north
or south of the equator. Refer to [17] for more details about UTM coordinates.
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cal model in equation (1.1) is transformed as:

Yi = β0 + β1Ei + β2Ni + β3Zi + β5 cos(Ai) + β6 sin(Ai) + Vi (1.2)

where β5 = β4 cos W and β6 = β4 sin W implicitly contain the information

about the constant moisture flux direction W . This implies that ASOADeK

assumes the moisture flux direction to be constant throughout the study region.

Once β and W are estimated, equation (1.2) can then be applied to predict

precipitation at the locations where no observations are made.

Assuming that Ei, Ni, Zi, and Ai are measured precisely, and applying

equation (1.2) to observations Y1, Y2, . . . , Yn, where n is the number of gauge

stations (a.k.a. observation sites), we obtain a system of equations with n

rows and p = 6 columns that relates the precipitation data Yi, to the model

parameters βj, j = 0, 1, 2, 3, 5, 6. The above system of equations can be written

using matrix notation as:

Y = Xβ + V (1.3)
Y1

Y2
...

Yn

 =


1 E1 N1 Z1 cos A1 sin A1

1 E2 N2 Z2 cos A2 sin A2
...

...
...

...
...

...
1 En Nn Zn cos An sin An




β0

β1

β2

β3

β5

β6

+


V1

V2
...

Vn


When there are more data points Yi than model parameters βj (which is usually

the case with precipitation data), it is impossible to find a model β that satisfies

every equation exactly. However, we can still find model parameters which fit

the given set of data in an approximate “best fit” sense [1]. This problem of

linear regression is solved using a least squares approach which minimizes the
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2-norm of the residuals, V = Y −Xβ. The least squares solution is obtained

using the normal equations [1] as4:

β̂ = (X′X)−1X′Y (1.4)

In the next step, ASOADeK removes Xβ̂, the mean part of the precipita-

tion random field Y (a.k.a. “trend”), leaving behind stationary, mean 0 (de-

trended) random field V obtained as the residuals from regression. These resid-

uals are further spatially interpolated by ordinary kriging to generate a residual

precipitation surface. The final precipitation map is produced by adding the

regression surface to the kriged residual surface.

However, there are a few shortcomings of ASOADeK model which

can significantly influence the precipitation estimates. They are:

1. Precipitation estimation using ASOADeK model is a multi-step approach

(linear regression, de-trending, and spatial interpolation). Multi-step ap-

proach leads to aggregation of errors.

2. Least squares solution for linear regression doesn’t account for any kind

of correlation that may be present between the gauge precipitation data.

3. The moisture flux direction W, is assumed to be constant throughout the

mountainous region.

4. Error magnitudes are proportional to the gauge precipitation measure-

ments - the higher the measurement, the higher is the error and vice

versa. This is shown in Figure 1.1.

4Hereafter, variable′ stands for Transpose of that variable
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5. Within linear regression given by equation (1.2), negative estimates of

precipitation are possible, although they make no sense physically.

Figure 1.1: Predicted values from ASOADeK model for February. Dark circles
- SNOTEL sites. (Courtesy - Dr. Makhnin)
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1.2 Structure Overview

This work is an attempt to refine the ASOADeK model by:

1. transforming multi-step estimation process into an ‘all in one’ estimation

process using Gibbs sampling,

2. taking into account the spatial covariance structure of the gauge data,
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3. doing away with the assumption of W being constant throughout the

region, and

4. taking the natural log of the precipitation measurements to achieve the

homogeneity of error variances, and prevent negative estimates.

The newly proposed model uses a Bayesian approach to estimate the

moisture flux direction random field (MFD RF) W (a column vector of all

Wi’s), instead of estimating a single value of W, and using it for all the obser-

vation and prediction locations. The model assumes some prior distribution

for the MFD RF that insures local uniformity of W, therefore keeping the

effective number of parameters low. The structure of this prior is inspired

by Ising model from image processing [11]. The model implements a Gibbs

sampler with an efficient ‘Metropolis within Gibbs’ step to compute the full

conditional posterior density for the MFD RF. It also does ‘all in one’ esti-

mation of the parameters responsible for the spatial covariance structure, and

regression parameters by implementing Markov chain Monte Carlo (MCMC)

algorithm through Gibbs sampling. This model is subjective since it involves

choosing a prior distribution for MFD RF. It also requires us to choose the pa-

rameter regulating the smoothness of the estimated W. The results obtained

in this work are encouraging but there is a need for more analysis.

Chapter 2 begins by describing the mathematical model used in this

work. It also includes the underlying geostatistical model for the continuous

spatial process of precipitation, following a standard representation as given

in [15]. It concludes by presenting the theory behind spatial interpolation

(kriging). Chapter 3 focusses on the key algorithms like Gibbs sampling, and
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‘Metropolis within Gibbs’ which are used to estimate the model parameters.

It also describes the Bayesian framework for sampling from the full conditional

posterior distributions. At the end of this chapter, we present the implemen-

tation issues of our algorithm. Chapter 4 is devoted to the results obtained for

the real dataset used in this work. It also includes some simulation and cross-

validation results. Chapter 5 is the concluding chapter of this work where we

analyze the results, draw some important conclusions, and talk about possible

future work.



CHAPTER 2

MODEL SPECIFICATION

In this chapter, we first describe the mathematical model for pre-

cipitation used in this work. Then we show that this model is equivalent to

a hierarchical geostatistical model for continuous spatial processes developed

in [15]. Finally, we conclude the chapter by presenting some theory behind

kriging.

2.1 Regression

The multivariate linear function (linear only in regression parameters)

defining the proposed model can be written as:

Yi ≡ ln(Pi) = β0 + β1Ei + β2Ni + β3Zi + β4 cos(Ai −Wi) + Vi (2.1)

where Pi is the precipitation measured in mm at gauge i, Ei is the UTM

easting coordinate [17] expressed in km, Ni is the UTM northing coordinate

expressed in km, Zi is the above sea-level terrain elevation expressed in km,

Ai is the terrain aspect measured in radians, Wi is the moisture flux direction

(MFD) measured in radians, Vi is residual (possibly, spatially correlated), and

(β0, β1, β2, β3, β4)
′ = β are regression parameters.

The elevation effect on the gauge precipitation is determined by β3,

and the spatial gradient effect is determined by β1 and β2. The orographic

9
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effects due to the effective moisture flux direction and the effective terrain

aspect are jointly determined by β4 and W, a vector of all Wi’s.

We chose the above functional form for the following reasons:

1. β1Ei and β2Ni can account for the “spatial trend” (different from “trend”

in geostatistics) in precipitation measurement.

2. β3Zi can account for the effect of the terrain elevation Zi on long-term

average precipitation Yi, as is evident from prior studies [9].

3. cos(Ai − Wi) is chosen in order to incorporate orographic effects; there

is a positive correction (cos(Ai − Wi) = 1) when Ai and Wi have the

same direction, negative correction (cos(Ai −Wi) = −1) when they have

exactly opposite directions, and zero orographic effect when they are

perpendicular (cos(Ai −Wi) = 0).

The direction of the slope orientation at each gauge location is given

by the terrain aspect Ai, where Ai = 0 corresponds to the linear elevation gra-

dient pointing north-south, angle increasing clockwise, and Ai = π corresponds

to the linear elevation gradient pointing south-north. The moisture flux direc-

tion Wi, follows the same convention. It captures interaction with the terrain

aspect and is averaged over many potential precipitation events.

We have seen that ASOADeK is developed on the assumption of a

constant Wi (W1 = W2 = . . . = Wn) over the entire region having n obser-

vation sites. If the mountainous region under study is small, and carefully

selected, then this assumption may hold true, but for bigger regions, this may
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no longer be true. This is the main difference between ASOADeK and the

model proposed in this work. Our primary goal is to first model the moisture

flux direction for the entire mountainous region irrespective of its size and then

use these estimates to achieve the secondary goal of constructing precipita-

tion maps for the entire region by the technique of spatial interpolation (a.k.a.

kriging in geostatistics parlance).

We have the precipitation data from the gauge measurements, and

also obtain the variables like easting, northing, elevation, and aspect for all

the observation sites from DEM obtained using ESRI ArcMap GIS tool. If we

also knew Wi for all the observation sites, then we could find a parametrized

surface that approximately fits this set of data. This procedure of surface-fitting

is known as “regression” [1]. By applying equation (2.1) to each observation,

we obtain a system of equations with n rows and p = 5 columns that relates the

natural log precipitation data ln Yi, to the model parameters βj, j = 0, 1, 2, 3, 4.

The above system of equations can be written using matrix notation as:

Y = Xβ + V (2.2)
Y1

Y2
...

Yn

 =


1 E1 N1 Z1 cos(A1 −W1)
1 E2 N2 Z2 cos(A2 −W2)
...

...
...

...
...

1 En Nn Zn cos(An −Wn)




β0

β1

β2

β3

β4

+


V1

V2
...

Vn


Since the model in equation (2.1) is linear in regression parameters β, we have

a multivariate linear regression problem to solve. For now we assume that Wi’s

are known, and solve the linear regression problem using “generalized least

squares” [10]. Later, we will address the joint estimation of W and β in the

Bayesian framework. Generalized least squares solution minimizes the 2-norm
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of the residuals, V = Y−Xβ, by taking into account the covariance structure

of the data. Such a solution is obtained from the normal equations [1] as:

β̂ = (X′Σ−1X)−1X′Σ−1Y (2.3)

where Σ is the covariance matrix of Y with elements σi,j = Cov(Yi, Yj). Cov

stands for covariance. Hereafter, β̂ is denoted only by β. These residuals are

further spatially interpolated by kriging to generate a residual precipitation

surface. The final precipitation map is produced by adding the regression

surface to the kriged residual surface.

2.2 Geostatistical Model

The gauge precipitation samples collected over a certain region can

be thought of as a realization of some spatial continuous stochastic (random)

process which can be modeled as a hierarchical linear Gaussian model [15].

We follow a model-based approach in which we begin by assuming a

hierarchical linear Gaussian model [15]. Consider a finite set of precipitation

observation sites u = (u1,u2, . . . ,un), within a region D. In our case, each ui

is characterized by a unique pair of UTM easting and northing coordinates,

and D is the mountainous region in semi-arid northern New Mexico. (More

about this study area is given in Chapter 4.) The precipitation data vector

is denoted by y(u) = (y(u1), y(u2), . . . , y(un))′, measurements of a random

vector Y(u) = (Y (u1), Y (u2), . . . , Y (un))′. Consider any one variable Y (ui)

from the random vector Y(u). The model splits Y (ui) into a mean (or trend)

part, the stationary signal S(ui), and noise ε(ui)

This hierarchical model has the following features [15]:
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1. Covariates: The “mean part” of the model is given by the term X(ui)
′β.

X(ui) represents a vector of spatially referenced non-random variables at

observation site ui. In our case, these non-random variables are easting

Ei, northing Ni, the terrain elevation Zi, and the term cos(Ai −Wi). β

is a vector of regression parameters.

2. Underlying spatial process: S(ui) is a stationary Gaussian random process

with zero mean, variance σ2, and variogram function Φ(h, ϕ), where ϕ is

a vector of correlation function parameters, and h is the vector distance

between any two observation sites, independent of ui. The variogram

function is usually assumed to have a parametric form. In our case, we

assume it as isotropic exponential because it is one of the simplest forms

which reflects the geostatistical principle that the correlation is highest

between the observation sites that are close by.

Φ(h, σ2, ϕ, τ 2
R) = σ2

[
1− exp

(
−|h|

ϕ

)
+ τ 2

R

]
(2.4)

where ϕ is the “range”, and τ 2
R is the “relative nugget” in geostatistics

parlance. τ 2
R can be written as:

τ 2
R =

τ 2

σ2
(2.5)

where τ 2 is the “nugget” and σ2 is the “partial sill” in geostatistics par-

lance.

3. Conditional independence: Variables Y (ui), i = 1, . . . , n, are assumed to

be normally distributed and conditionally independent given the signal,

i.e.,

Y (ui)|S ∼ N(X(ui)
′β + S(ui), τ

2) (2.6)
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Y (ui)’s are related through a “semivariogram (or simply variogram) function

as:

Φ(h) =
1

2
Var (Y (ui)− Y (ui + h)) (2.7)

where Var stands for variance.

The model given in equation (2.6) corresponds to a spatial linear

mixed model and it can be specified in a hierarchical scheme for the random

vector Y(u) as follows [15]:

Level 1: Y(u) = X(u)β + S(u) + ε(u) (2.8)

where ε(u) ∼ N(0, τ 2I), and I is n× n identity matrix.

Level 2: S(u) ∼ N(0, σ2Ry(ϕ)) (2.9)

where Ry(ϕ) is the n × n correlation matrix (hereafter denoted only by Ry)

with elements

ri,j = Corr(Yi, Yj) = exp

(
−
√

(Ei − Ej)2 + (Ni −Nj)2

ϕ

)
(2.10)

where Corr stands for correlation.

Level 3: (β, σ2, ϕ, τ 2) ∼ p(·) (2.11)

where p(·) is a prior distribution. The model parameters for the above hierar-

chical scheme can be described as follows:

1. Y(u) is a random vector with components Y (u1), Y (u2), . . . , Y (un), re-

lated to the precipitation measurements at the observation sites.
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2. X(u)β = µ(u) is the mean of Y(u) (hereafter denoted only by Y).

In geostatistical parlance, this is known as the trend. X(u) (hereafter

denoted only as X) is a matrix of fixed covariates measured at observation

sites ui. β is a vector of regression parameters.

3. S(u) has zero mean and the covariance matrix σ2Ry. The elements of Ry

are determined by the variogram function expressed in equation (2.4).

4. ε(u) denotes the Gaussian white noise vector at the observation sites with

zero mean and covariance matrix τ 2I.

5. Level 3 specifies the prior distribution for the model parameters.

In our case, precipitation is the final result which can be determined

by the summation of components of the above linear model and exponentiating.

Note that only the variable Y is observable. Trend, signal, and variogram

parameters all have to be estimated.

2.3 Kriging

The measured precipitation data can be used to estimate precipitation

at some other locations in the study region. This estimation is done using krig-

ing, a least squares linear prediction procedure, which, under certain stationar-

ity assumptions, requires at least the knowledge of the covariance parameters

(a.k.a. variogram parameters in geostatistics parlance) and the functional form

for the mean of the underlying stochastic process. More often the covariance

parameters are not known and hence spatial interpolation should be done using

different approaches [15]. We chose a Bayesian approach primarily because we
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can incorporate parameter uncertainties when deriving all the posterior distri-

butions for these parameters and in the kriging prediction. It also allows us to

exploit the modular structure of a Gibbs sampler (explained later in Chapter

3), thus incorporating the estimation of W, as well.

Suppose we want to predict natural log precipitation at some unob-

served location u0. Let’s denote this unknown value as Y0. Given the estimates

of parameters σ2, ϕ, and τ 2
R, we compute the correlation matrix Ry, and the

covariance matrix C = Ry + τ 2
RI (so that Cov(Y) = σ2C). We then predict

“signal” S0 at location u0 as:

Ŝ0 = r′C−1V (2.12)

where V = Y −Xβ̂ is residual vector from regression, and r is a vector with

elements r0,i given by the following expression:

r0,i = exp

(
−
√

(E0 − Ei)2 + (N0 −Ni)2

ϕ

)
(2.13)

where E0 and N0 are the UTM easting and northing coordinates [17] of location

u0. To predict Y0, we will add the signal from equation (2.12) to regression

surface, i.e.,

Ŷ0 = X′
0β̂ + Ŝ0 (2.14)

where X0 is the column vector of covariates at location u0. The entire procedure

is known as “kriging with external trend” [6]. This method’s prediction usually

differs from the optimal Bayesian estimate E[Y0|Y] [3], especially it underesti-

mates the prediction variance. However, kriging is still very popular because of

its high efficiency. We will employ this method to obtain precipitation maps,
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and for cross-validation. Computation of E[Y0|Y] can be incorporated into the

Gibbs sampler.



CHAPTER 3

HIDDEN RANDOM FIELD MODELING

This chapter describes the entire methodology behind the proposed

algorithm to estimate the hidden moisture flux direction random field (MFD

RF), the model parameters, and further predict precipitation at unobserved lo-

cations. In the first section, we present a brief overview of Markov chain Monte

Carlo (MCMC) methods, followed by Gibbs Sampling and the Metropolis al-

gorithm used to construct a Markov chain having a stationary distribution. In

the next couple of sections, we discuss the actual procedure of estimating MFD

RF and the model parameters. Last section is devoted to the details of the

sampling algorithm.

3.1 Background on Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a method of doing Monte

Carlo integration using Markov chains. It is used in Bayesian inference to

draw a sample from the posterior distribution of model parameters given the

data. When such a sample is drawn from a suitably constructed Markov chain

which is run for a long time, we get Markov chain Monte Carlo integration [8].

Let’s first try to understand the Bayesian formulation to obtain the posterior

distribution.

Under Bayesian framework, all parameters in a statistical model are

18
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considered as random quantities. Let Y denote the data, and θ denote model

parameters. Bayesian inference requires setting up a joint probability distribu-

tion p(Y, θ) over all random quantities. A full probability model can be written

as:

p(Y, θ) = p(Y|θ) · p(θ) (3.1)

where p(θ) is a prior distribution, and p(Y|θ) is the likelihood. Using Bayes

theorem, we can determine the distribution of θ conditional on Y as:

p(θ|Y) =
p(θ) · p(Y|θ)∫
p(θ) · p(Y|θ)dθ

(3.2)

Left hand side of equation (3.2) is called the posterior distribution of θ, and is

the main objective of Bayesian inference. Any desirable feature of the posterior

distribution can be expressed in terms of posterior expectations of functions of

θ [8]. This posterior expectation can be written as:

E[f(θ)|Y] =

∫
f(θ) · p(θ) · p(Y|θ)dθ (3.3)

The integrations in equation (3.3) can be evaluated using MCMC.

Restating the above problem in more general terms, let X be a vector

of random model parameters, with posterior distribution π(·) = p(·|Y). So,

the task is to evaluate the expectation

E[f(X)] =

∫
f(x)π(x)dx∫

π(x)dx
(3.4)

for some function of interest f(·).
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3.1.1 Monte Carlo Integration

Monte Carlo integration evaluates E[f(X)] by drawing samples Xt,

t = 1, . . . ,m from the posterior π(·) and then approximating

E[f(X)] ≈ 1

m

m∑
t=1

f(Xt)

So, a population mean of f(X) is estimated by a sample mean [8]. Law of

large numbers ensures that by increasing the sample size m, we can increase

the accuracy of our approximation. One way of generating the sample set Xt

is through a Markov chain having π(·) as its stationary distribution.

3.1.2 Markov Chains

A stochastic model has the Markov property if what happens at time

t + 1 depends only on the state at time t, and not on previous history. That

is, given Xt, the next state Xt+1 is sampled from a distribution p(Xt+1|Xt)

which depends only on the current state of the chain, Xt. This sequence is

called a Markov chain. The chain eventually converges to a unique stationary

distribution, which is independent of t or initial state X0. Thus, as t increases,

the sampled points Xt resemble dependent samples from the stationary distri-

bution. We can now estimate the expectation E[f(X)] from the Markov chain

output as:

f =
1

m− k

m∑
t=k+1

f(Xt) (3.5)

Here, k denotes “burn-in” (a.k.a. pre-convergence time), the number of itera-

tions needed for the Markov chain output to resemble stationary distribution.

In some of our computations, we neglected the effect due to burn-in because
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the output converged quickly. The expression in equation (3.5) is known as

ergodic average and convergence to the desired expectation is ensured by the

ergodic theorem [8].

3.1.3 Gibbs Sampling

Gibbs sampling, a phrase coined by Geman and Geman (1984) [8], is

an iterative Monte Carlo method which produces Markov chains based on so-

called full or complete conditional distributions. Gibbs sampling is useful when

the multivariate conditional distributions are not in the closed form, which is

more often the case for real-world problems, or in scenarios where it is imprac-

tical to sample from a large number of univariate conditional distributions [3].

For a M -dimensional problem with M random variables (U1, U2, . . . , UM), a uni-

variate substitution approach would require sampling from a chain of M(M−1)

univariate conditional distributions. A pre-requisite for using Gibbs sampling

is to know all the full conditional distributions pi(Ui|Uj 6=i), i = 1, 2, . . . ,M ,

either completely or partially (when sampled using the Metropolis algorithm

which is discussed in Section 3.1.4). Under mild conditions (Besag, 1974) [3],

these full conditional distributions uniquely determine the full joint distribu-

tion p(U1, U2, . . . , UM), and marginal distributions p(Ui), i = 1, 2, . . . ,M . The

steps involved in Gibbs sampling algorithm are as follows:

1. Starting with
(
U

(0)
1 , U

(0)
2 , . . . , U

(0)
M

)
, complete one Gibbs iteration as fol-
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lows:

Draw U
(1)
1 ∼ p1

(
U1|U (0)

2 , . . . , U
(0)
M

)
Draw U

(1)
2 ∼ p2

(
U2|U (1)

1 , U
(0)
3 , . . . , U

(0)
M

)
Draw U

(1)
3 ∼ p3

(
U3|U (1)

1 , U
(1)
2 , U

(0)
4 , . . . , U

(0)
M

)
...

Draw U
(1)
M ∼ pM

(
UM |U (1)

1 , . . . , U
(1)
M−1

)

2. Repeat the first step t times to obtain
(
U

(t)
1 , U

(t)
2 , . . . , U

(t)
M

)
such that it

resembles the true stationary distribution of the Markov chain.

Hence, we can say that Gibbs sampling sequentially updates each estimated

parameter from its full conditional until satisfactory convergence obeying the

following theorem [3] is achieved.

Theorem: For the Gibbs sampling algorithm outlined above,

1.
(
U

(t)
1 , . . . , U

(t)
M

)
→ (U1, . . . , UM) ∼ p(U1, . . . , UM) as t →∞.

2. The convergence in part (1) is exponential in t using the L1 norm.

From a practical viewpoint, it is reasonable to say that MCMC algorithm con-

verges after time T , when the output resembles the true stationary distribution

of the Markov chain for all t > T [3].
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3.1.4 The Metropolis Algorithm

The Metropolis algorithm is an efficient way of constructing a Markov

chain such that its stationary distribution coincides with the posterior distri-

bution π(·). It is a special case of the “Metropolis-Hastings” (or “Hastings-

Metropolis”) algorithm due to Hastings (1970), and first proposed by Metropo-

lis et al. (1953) [8].

Consider a proposal distribution q(·|Xt). We can sample a proposal

value Y at time t from the proposal distribution. If the sampled value is

accepted, the next state becomes Xt+1 = Y . If not, the Markov chain does not

move, i.e., Xt+1 = Xt. The proposal distribution of the form q(X|Y ) = q(Y |X)

is said to be symmetric for all X and Y , and is the one defining the Metropolis

algorithm [8]. The probability of acceptance of Y is given as:

α(X, Y ) = min

(
1,

π(Y )

π(X)

)
(3.6)

Thus, we can easily generate a Markov chain using the Metropolis

algorithm as follows:

1. Draw a sample (proposal value) Y from q(·|Xt), where Xt is the current

state of the Markov chain.

2. Compute the joint posterior densities at both the proposal value Y and

the current value Xt.

3. Sample a uniform random variable U from (0, 1).

4. If U < α(X, Y ), then accept the proposal value, i.e., set the next state of

Markov chain Xt+1 = Y .
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5. If U > α(X, Y ), then reject the proposal value, i.e., set the next state of

Markov chain Xt+1 = Xt.

One attractive thing about using the Metropolis algorithm to generate a Markov

chain is that we don’t have to know the joint posterior distributions exactly,

which is more often the case in Bayesian inference. Instead, as seen from equa-

tion (3.6), we only need to know them up to a constant.

3.2 Estimation of Moisture Flux Direction Random Field

The value of hidden moisture flux direction random field (MFD RF)

Wi, is fitted at each of the observation sites i, 1 ≤ i ≤ n. Thus, it is different

for different sites, unlike the ASOADeK model which assumes a uniform MFD

(recall from Chapter 1). Also, the values of Wi are taken modulo 2π, which

renders a certain unique character to the model, compared to other random

field models. For example, Gaussian priors for Wi are not applicable. On the

other hand, issues of tail behavior are less important here, since the values of

Wi belong to a compact set.

Using Bayesian approach and trying to mimic results from image pro-

cessing [11], we specify a prior distribution for the values of Wi as:

p(W1, . . . ,Wn) ∝ exp

[
γ
∑
k∼l

ωkl cos(Wk −Wl)

]
(3.7)

where the sum is taken over the pairs of neighboring sites k and l (for example,

those that are less than a critical distance apart) and weights ωkl reflect the

distance between kth and lth gauge locations. The weights are chosen to be

highest for gauge locations that are closest. For example, we can use weighting
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by inverse square distance, or some other decreasing function of distance. We

chose the critical distance d0 = 60 km in our work. We chose the weights using

the following relation:

ωkl =
(d0/2)2

d2
kl

(3.8)

where

dkl =
√

(Ek − El)2 + (Nk −Nl)2

is the Euclidean distance between kth and lth gauge locations. As a result, uni-

formity is rewarded, but the differences between points are allowable, especially

for the points that are far apart.

The choice of prior as given in equation (3.7) is analogous to the prior

used in image processing models based on Ising model [11], with γ ≥ 0 playing

the role of the phase constant. High values of γ should lead to a more uniform

random field, whereas γ = 0 will result in the orientation of Wi either parallel

or opposite to the aspect Ai. Thus, γ can be considered as a “smoothing

parameter.

In order to obtain the complete likelihood for W, we should also

consider W conditional on other model parameters (refer to equation (3.16) in

Section 3.3). The complete likelihood can then be written as1:

p(W|Y, γ∗, β, σ2, ϕ, τ 2
R)

∝ p(W) · p(Y|β, σ2, ϕ, τ 2
R,W, γ∗)

∝ exp

[
γ∗
∑
k∼l

ωkl cos(Wk −Wl)−
1

2
(Y −Xβ)′Σ−1(Y −Xβ)

]
(3.9)

1Hereafter, the subscript ‘∗’ indicates that the indexed parameter is assumed to be known.
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where Σ = σ2C is the covariance matrix of Y. Using equation (3.9), we can ob-

tain the full conditional posterior densities2, pi(Wi|W1, . . . ,Wi−1, Wi+1, . . . ,Wn,

Y, γ∗, β, σ2, ϕ, τ 2
R). These will be known only up to a constant, but we don’t

have to know the constant in order to use the Metropolis algorithm as dis-

cussed in Section 3.1.4. This part of the procedure is known as ‘Metropolis

within Gibbs’ with single-site updating. That is, we loop over all the sites,

each time sampling from the full conditional, for the implementation of a Gibbs

sampler. The variogram parameters ϕ and τ 2
R are also estimated using MCMC

algorithm through ‘Metropolis within Gibbs’ sampling. Variogram parame-

ter σ2 and regression parameters β, are also estimated using MCMC algorithm

through Gibbs sampling without Metropolis step, using the approach described

in Section 2.1, and it’s equivalent to generalized least squares solution given in

equation (2.3).

3.3 Estimation of Model Parameters

Geostatistical Bayesian framework developed by Ribeiro and Diggle

[15] is used in this work. The joint prior distribution for variogram and regres-

sion parameters (a.k.a. the model parameters) can be factorized and written

as:

p(β, σ2, ϕ, τ 2
R) = p(ϕ, τ 2

R) · p(β, σ2|ϕ, τ 2
R) (3.10)

The uncertainty in the model parameters is considered when deriving

all the posterior distributions. The joint posterior distribution for the model

2We use the terms ‘distribution’ and ‘density’ interchangeably.
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parameters can be factorized and written as:

p(β, σ2, ϕ, τ 2
R|Y, γ∗,W) = p(β, σ2|Y, γ∗,W, ϕ, τ 2

R) · p(ϕ, τ 2
R|Y, γ∗,W) (3.11)

Therefore,

p(ϕ, τ 2
R|Y, γ∗,W) =

p(β, σ2, ϕ, τ 2
R|Y, γ∗,W)

p(β, σ2|Y, γ∗,W, ϕ, τ 2
R)

(3.12)

The joint posterior distribution in the numerator of equation (3.12)

can also be expressed in terms of the prior distribution and likelihood as:

p(β, σ2, ϕ, τ 2
R|Y, γ∗,W) ∝ p(β, σ2, ϕ, τ 2

R) · p(Y, γ∗,W|β, σ2, ϕ, τ 2
R) (3.13)

The posterior distribution in the denominator of equation (3.12) can

be factorized and written as:

p(β, σ2|Y, γ∗,W, ϕ, τ 2
R) = p(β|Y, γ∗, σ

2,W, ϕ, τ 2
R) · p(σ2|Y, γ∗,W, ϕ, τ 2

R)

(3.14)

Using equations (3.13) and (3.14), the joint posterior distribution

given in equation (3.12) can now be expressed as:

p(ϕ, τ 2
R|Y, γ∗,W) ∝

p(β, σ2, ϕ, τ 2
R) · p(Y, γ∗,W|β, σ2, ϕ, τ 2

R)

p(β|Y, γ∗, σ2,W, ϕ, τ 2
R) · p(σ2|Y, γ∗,W, ϕ, τ 2

R)
(3.15)

The distributions in the numerator of equation (3.15) are given by

the joint prior distribution from equation (3.10) and the likelihood function:

L(β, σ2, ϕ, τ 2
R|Y, γ∗,W) ∝ (σ2)−

n
2 |C|−

1
2 exp

[
− 1

2σ2
(Y −Xβ)′C−1(Y −Xβ)

]
(3.16)

where

C = Ry + τ 2
RI (3.17)
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Recall from Chapter 2 that Ry is the correlation matrix, τ 2
R is the relative

nugget and I is n × n identity matrix. By using the covariance matrix C, we

account for the fact that the gauge precipitation data are spatially correlated.

The conditional posterior distributions in the denominator of equation

(3.15) have the following forms [15]:

(β|Y, γ∗, σ
2,W, ϕ, τ 2

R) ∼ N(β̂, σ2Vβ̂) (3.18)

(σ2|Y, γ∗,W, ϕ, τ 2
R) ∼ χ2

ScI(n− p, S2) (3.19)

where

β̂ = (X′C−1X)−1X′C−1Y (3.20)

Vβ̂ = (X′C−1X)−1 (3.21)

S2 =
1

n− p
(Y −Xβ̂)C−1(Y −Xβ̂) (3.22)

Again recall from Chapter 2 that n is the number of observation sites, and p

is the number of regression parameters (elements of β). Also, the expression

for fitted parameters β̂ given in equation (3.20) is equivalent to the generalized

least squares expression given in equation (2.3) where Σ = σ2C. N(β̂, σ2Vβ̂)

is a p-dimensional Multivariate Normal (MVN) distribution with mean β̂ and

covariance matrix σ2Vβ̂. χ2
ScI(n − p, S2) is a Scaled-Inverse-χ2 distribution

with (n− p) degrees of freedom.

The corresponding multivariate Normal and Scaled-Inverse-χ2 prob-

ability density functions for β and σ2 can be written as:

p(β) =
1

(2π)
p
2 |σ2Vβ̂|

1
2

exp

[
−1

2
(β − β̂)′(σ2Vβ̂)−1(β − β̂)

]
(3.23)
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p(σ2) =

(
n−p

2

)(n−p
2 )

Γ(n−p
2

)
(S2)(

n−p
2 )(σ2)−(n−p

2
+1) exp

[
−(n− p)S2

2σ2

]
(3.24)

The conditional posterior distributions for β and σ2 as given in equa-

tions (3.18) and (3.19) are obtained using an improper prior:

p(β, σ2|ϕ, τ 2
R) =

1

σ2
(3.25)

This is a commonly adopted prior distribution for (β, σ2) encountered in Bayesian

inference for Gaussian linear models [15]. Some of its properties are:

• It is improper because it doesn’t integrate to one.

• It corresponds to zero ‘prior observations’, reflecting our ignorance about

σ2 and β.

• It also corresponds to the Jeffrey’s prior [15].

• It also coincides with the generalized least squares approach [10].

Using the conditional posterior distributions from equations (3.18) and (3.19),

the joint posterior distribution for (β, σ2) can be written as a Normal-Scaled-

Inverse-χ2, i.e., a product of Normal and Scaled-Inverse-χ2 densities [15]:

(β, σ2|Y, γ∗,W, ϕ, τ 2
R) ∼ N(β̂,Vβ̂) · χ2

ScI(n− p, S2) (3.26)

The joint posterior distribution for (ϕ, τ 2
R) as given in equation (3.15)

can be greatly simplified using equations (3.10), (3.16), (3.23), (3.24), and

(3.25), and written as:

p(ϕ, τ 2
R|Y, γ∗,W) ∝ p(ϕ, τ 2

R) · |Vβ̂|
1
2 |C|−

1
2 (S2)(−

n−p
2 ) (3.27)



30

The joint prior distribution for (ϕ, τ 2
R) can be factorized and written

as:

p(ϕ, τ 2
R) = p(ϕ) · p(τ 2

R) (3.28)

We chose uniform priors for ϕ and τ 2
R to obtain the joint posterior distribution

for (ϕ, τ 2
R) using equation (3.27).

p(ϕ) = Uniform(ϕmin, ϕmax) (3.29)

p(τ 2
R) = Uniform(τ 2

Rmin
, τ 2

Rmax
) (3.30)

ϕmin, ϕmax, τ
2
Rmin

, and τ 2
Rmax

are sensibly chosen and they may be different for

different months.

Equation (3.27) doesn’t define a standard probability distribution

[15]. Hence, we adopt the method of inference by simulation by taking sam-

ples from the above joint posterior distribution. Originally in [15], the authors

propose a grid approach to sample (ϕ, τ 2
R), however, we found that using the

Metropolis algorithm to jointly sample (ϕ, τ 2
R) is computationally much more

efficient. In the grid approach, the distribution of (ϕ, τ 2
R) is discretized on a

two-dimensional grid. Then we sample from this discrete distribution in or-

der to perform a Gibbs step for (ϕ, τ 2
R). Thus, a single Gibbs step becomes

computationally intensive. In order to obtain reliable MCMC results assuring

convergence and low sampling error, we need to iterate for many such Gibbs

steps (say, on the order of 100, 000). Besides, gridding causes discretization

errors. We have to evaluate equation (3.27) - the costliest in our computa-

tion - just twice (using old and proposed values) per cycle using the Metropolis

approach.
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3.4 The Sampling Algorithm

The sampling algorithm described above can be detailed as follows:

1. Draw a W sample using pi(Wi|W1, . . . ,Wi−1, Wi+1, . . . ,Wn,Y, γ∗, β, σ2,

ϕ, τ 2
R), with i going from 1 through n. This step is done using random-

walk Metropolis algorithm which is described below in section on “Metropo-

lis Sampling of W”. Initially we assume some suitable values for ϕ, τ 2
R, σ2,

β, and W but for each subsequent iteration, we use ϕ, τ 2
R, σ2, β, and W

values computed from the previous iteration.

2. Draw a sample from p(β, σ2, ϕ, τ 2
R|Y, γ∗,W) to estimate variogram and

regression parameters. This involves the following substeps:

(a) Draw a (ϕ, τ 2
R) pair using p(ϕ, τ 2

R|Y, γ∗,W) as given in equation

(3.27). We use W previously computed in the same iteration. This

step also involves a Metropolis substep for selecting (ϕ, τ 2
R) as ex-

plained below in Section on “Metropolis Sampling of (ϕ, τ 2
R) Pair”.

(b) Draw a σ2 sample using (σ2|Y, γ∗,W, ϕ, τ 2
R) as given in equation

(3.19). We use ϕ and τ 2
R values previously computed in the same

iteration.

(c) Draw a β sample using (β|Y, γ∗, σ
2,W, ϕ, τ 2

R) as given in equation

(3.18). We use ϕ, τ 2
R, and σ2 values previously computed in the same

iteration.

W used in this step is always the one computed in the same iteration

using step 1.
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3. Apply steps 1 and 2 repeatedly for sufficiently large number of itera-

tions to ensure convergence and high enough sample size sufficient for

the Monte Carlo inference.

Metropolis Sampling of W

1. Generate proposal W ∗
i as:

W ∗
i = Wi,old + Uniform(−h, h) (3.31)

2. Compute d∗i , the relative log-likelihood of W ∗
i , and di, the relative log-

likelihood of Wi,old using equation (3.9).

3. If d∗i > di, then accept proposal, i.e., set Wi,new = W ∗
i .

4. If d∗i < di, then accept or reject proposal, W ∗
i , with probability depending

on d∗i and di. The probability expression chosen is [11]:

α(W ∗
i , Wi,old) = min(1, exp(d∗i − di)) (3.32)

5. Sample a uniform random variable U from (0, 1).

6. If α(W ∗
i , Wi,old) > U , then accept proposal, i.e., set Wi,new = W ∗

i , other-

wise reject proposal, i.e., set Wi,new = Wi,old.

The maximum random-walk step-size h is chosen adaptively in order

to maintain the overall acceptance rate between 20− 30% which is considered

most efficient in Metropolis algorithm [3]. Choice of h is slightly sensitive to the

smoothing parameter γ but highly sensitive to the data (signal); the higher the

signal-to-noise ratio is, the smaller h is, and vice versa. Here, signal-to-noise

ratio is defined as β4/σ.
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Metropolis Sampling of (ϕ, τ 2
R) Pair

1. Generate proposals ϕ∗
i and τ 2∗

Ri
as:

ϕ∗
i = Uniform(ϕmin, ϕmax) (3.33)

τ 2∗
Ri

= Uniform(τ 2
Rmin

, τ 2
Rmax

) (3.34)

2. Compute a relative likelihood of (ϕ∗
i , τ

2∗
Ri

) pair as l∗i , and a relative likeli-

hood of (ϕi,old, τ
2
Ri,old

) pair as li, by taking natural log of equation (3.27).

3. If l∗i > li, then accept proposals, i.e., set ϕi,new = ϕ∗
i , and τ 2

Ri,new
= τ 2∗

Ri
.

4. If l∗i < li, then accept or reject proposals (ϕ∗
i , τ

2∗
Ri

), with probability de-

pending on l∗i and li. The probability expression chosen is [11]:

α((ϕ∗
i , τ

2∗
Ri

), (ϕi,old, τ
2
Ri,old

)) = min(1, exp(l∗i − li)) (3.35)

5. Sample a uniform random variable U from (0, 1).

6. If α((ϕ∗
i , τ

2∗
Ri

), (ϕiold
, τ 2

Ri,old
)) > U , then accept proposals, i.e., set(ϕi,new,

τ 2
Ri,new

) = (ϕ∗
i , τ

2∗
Ri

), otherwise reject proposals, i.e., set (ϕi,new, τ 2
Ri,new

) =

(ϕi,old, τ
2
Ri,old

).

Implementation Issues

The actual implementation of the sampling algorithm is done in a

slightly different way. Instead of updating Wi, 1 ≤ i ≤ n, for a given ith

observation site, using the Wj’s, 1 ≤ j < i, computed for the remaining sites in

the same iteration, we update it using values of Wj from the previous iteration.

This simplifies computation to some extent without adversely affecting the
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results. Also, there is an “aliasing” effect of sign of β4 with W direction. That

is,

β4 cos(Ai −Wi) = −β4 cos(Ai − (Wi − π)) (3.36)

From equation (3.36) we can say that switching the sign of β4 is equivalent to

switching the moisture flux direction to the opposite. In this work, we avoid

this aliasing effect by restricting β4 to be positive.



CHAPTER 4

RESULTS

In this chapter, we present the results obtained using simulated as well

as actual precipitation data. Simulated data were used to validate the approach

at each stage as summarized in the sampling algorithm given in Chapter 3, in

order to test the robustness of the MCMC approach, and in “cross-validation”

process. Analysis was done separately for each month. We present the following

key results which serve as representatives for their categories - one complete

set of MCMC outputs for the month of August, set of outputs showing the

influence of the smoothing parameter γ, results showing common features in

MFD RF for different months keeping the same γ, and cross-validation results

which would help us choose an optimal value of the smoothing parameter γ for

a particular month.

4.1 Study Area

Our model is used to estimate the moisture flux direction and sub-

sequently obtain monthly precipitation maps for the mountainous region in

semi-arid northern New Mexico.

There are three NCDC (National Climate Data Center) climate divi-

sions in northern New Mexico [9]. Figure 4.1 shows the DEM and the weather

stations for climate division 2. Division 2 consists of mountainous region (San-

35
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gre de Cristo mountains) with inter-mountain valleys. Division 5 covers the

central valley along the Rio Grande rift, and Division 6 covers the central high-

lands. Division 2, due to its mountainous terrain, is an ideal candidate for

our study. The precipitation data from Division 2 were originally picked for

ASOADeK model [9]; we use them in this study, partially to be able to com-

pare our results with ASOADeK results. In division 2, the mountain elevation

ranges from 1290m to 3887m as per the 1km-resolution DEM map shown in

Figure 4.1, which was resampled from a 60m-resolution DEM [9]. The precip-

itation is measured using 83 gauge stations, i.e., n = 83. 74 of these stations

are the NCDC stations which have at least 10-year data available in the period

from 1931 to 2005. The remaining 9 are SNOTEL (SNOwpack TELemetry)

stations. They are fairly new with data available from 1980 to 2005. The du-

ration of the available data (NCDC and SNOTEL) is also shown in Figure 4.1.

Figure 4.1: Study Area in Northern New Mexico - A Division 2 DEM with
gauge stations (‘+’ indicate the SNOTEL gauges), and the period of available
data
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4.2 MCMC Results

4.2.1 One Complete MCMC Output

We tested our model using observed precipitation data for different

months and obtained the model parameters as shown in Tables 4.1 and 4.2. As

our final estimates, we take mean values of β and median values of σ2, ϕ, τ 2
R

from their respective Markov chains with burn-in ≈ 2, 000. The medians are

chosen because of highly skewed nature of those distributions. We ran the

sampling algorithm for 40, 000 iterations for approximate CPU time of 16 mins

on AMD Athlon(tm) XP 2800+ processor to obtain the entire set of estimates

for a single month. We chose the initial values as β = (0, 0, 0, 0, 1)′, σ2 = 0.01,

ϕ = 50, and τ 2
R = 0.5. We used γ = 2, the one obtained from cross-validation

results as explained in Section on cross-validation results. Figures 4.2 through

Table 4.1: Regression parameter estimates for 3 different months

Month β0 β1 β2 β3 β4

February −0.1394 −0.0027 0.0011 1.2961 0.2398
May 2.481 0.0037 0.0002 0.4715 0.1017
August 3.2108 0.0014 −0.0005 0.4232 0.1259

Table 4.2: Variogram parameter estimates and acceptance rates for 3 different
months

Month σ2 ϕ τ 2
R W Accp. Rate (ϕ, τ 2

R) Accp. Rate

February 0.0707 245.708 1.2072 23.92 44.14
May 0.0395 162.293 0.4540 22.18 13.04
August 0.0751 139.384 0.048 23.095 5.2

4.6 show one complete set of MCMC results for the month of August.
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Figure 4.2: One complete MCMC output for August - Markov chain values
and histograms of regression parameters β0 and β3.
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Figure 4.3: One complete MCMC output for August - Markov chain values
and histograms of regression parameters β1 and β2.
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Figure 4.4: One complete MCMC output for August - Markov chain values,
histograms, and Auto-correlation functions of regression parameter β4 and var-
iogram parameter σ2.
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Figure 4.5: One complete MCMC output for August - Markov chain values
and histograms of variogram parameters ϕ and τ 2

R.
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Figure 4.6: One complete MCMC output for August - Moisture flux direction
random fields (dashed line - constant ASOADeK MFD, solid line - estimated
MFD RF), log-likelihood, and Markov chain values for 2 observation sites.
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4.2.2 Influence of γ

We also investigated the effect of four different γ’s (γ = 0.5, 2, 4, 8)

on the moisture flux direction random field using the precipitation data for

the month of May. Once again, we ran the sampler for 40, 000 iterations with

burn-in ≈ 2, 000. The plots are shown in Figure 4.7. One can observe the

increasing smoothness of the field as parameter γ increases.

Figure 4.7: Influence of γ’s - MFD RF’s for May for γ = 0.5, 2, 4, and 8 (dashed
line - constant ASOADeK MFD RF, solid line - estimated MFD RF).
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4.2.3 MFD RF Comparison

In order to investigate the effect due to moisture flux direction ran-

dom field W on orographic precipitation, we chose one particular value of the

smoothing parameter γ, and obtained results for the random field estimates for

six different months. Figure 4.8 shows the different MFD RF’s. One can see

that for all the six months, MFD RF is an average of two prevailing moisture

directions, moisture from Pacific coast on the west, and moisture from the Gulf

of Mexico on the south-west. We ran the sampler for 40, 000 iterations with

burn-in ≈ 2, 000.

Figure 4.8: MFD RF Comparison - MFD RF’s for February, April, June, Au-
gust, October, and December obtained using γ = 1 (dashed line - constant
ASOADeK MFD RF, solid line - estimated MFD RF).
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4.3 Cross-validation

In order to validate our results, we used the technique of cross-validation.

In cross-validation, we leave out some data points and try to estimate the val-

ues at those ‘missing’ points. The higher the match between the actual and

the estimated values at those points is, the better the model is. We did cross-

validation experiments by considering ∼ 90% of the data and estimating the

remaining ∼ 10% values. We used simulated data, as well as real data for cross-

validation. The main purpose for doing cross-validation was to ‘calibrate’ the

smoothing parameter γ, i.e., to find out which γ produces precipitation esti-

mates with minimum mean absolute error (MAE) and minimum mean squared

error (MSE).

4.3.1 Cross-validation Using Simulation Data

We assigned the following values to the model parameters treating

them as ‘true’ values to run the simulation - Wtrue is a random field with two

moisture flux directions 3π/4 and 5π/4, βtrue = (0, 0, 0, 0, 1)′, σ2
true = 0.01,

ϕtrue = 50, and τ 2
Rtrue

= 0.5.We used the same covariates as the real data. We

randomly selected ∼ 10% observation sites to predict the‘simulated’ precipita-

tion values for, using the remaining simulated data. Keeping the same set of

sites, we ran the sampler for γ = 0.5, 1, 3, and 8 for 40, 000 Gibbs steps with-

out burn-in. We repeated this entire procedure for 32 different combinations of

‘∼ 10% discarded sites’ to generate large enough sample size N = 144 (16 com-

binations were obtained using kriging whereas the remaining 16 were obtained

using the full Bayesian predictive distribution approach.). We calculated the

t-statistics (t is Student’s t distribution) and p-values (by considering γ = 8
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as reference) for 3 pairwise differences namely, γ = 0.5 and 8, γ = 2 and 8,

and γ = 4 and 8. From the statistical analysis, we found that all these γ’s

gave better estimates than γ = 8. We also compared the MAE’s and MSE’s

for other two pairs, γ = 0.5 and γ = 1, and γ = 3 and γ = 1, and found that

γ = 1 gave the best estimates. These results are listed in Table 4.3. They show

improvement over ASOADeK’s constant MFD (since larger γ corresponds to

the case of constant MFD). The negative values for mean indicate that those

γ’s are better than the reference gamma, with mean for γ = 1 being the most

negative. MAE for each of the 32 sets of ‘discarded’ sites are shown in Figure

4.9. The thick lines show the average MAEs obtained using kriging and the

full Bayesian approach. The actual versus predicted values are shown in figure

4.10. Figures 4.11 and 4.12 show the MCMC outputs for cross-validation using

simulated data using the full Bayesian approach.

Table 4.3: t-statistics and p-values using simulated data

γ pairs N Mean Std. Dev. t-stats p-value

0.5− 8 144 −0.1003 0.2117 −5.6854 6.525e− 09
1− 8 144 −0.1332 0.1888 −8.4661 1.269e− 17
3− 8 144 −0.0853 0.1175 −8.7115 1.500e− 18

0.5− 1 144 0.0329 0.1359 2.9051 1.836e− 03
3− 1 144 0.0479 0.1252 4.5911 2.205e− 06

4.3.2 Cross-validation Using Northern New Mexico Data

We randomly selected ∼ 10% observation sites to predict the ‘true’

precipitation values for May, using the remaining actual May data. Keeping

the same set of sites, we ran the sampler for γ = 0.5, 1, 3, and 8 for 40, 000
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Gibbs steps without burn-in. We repeated this entire procedure for 36 different

combinations of ‘∼ 10% discarded sites’ to generate a sample size N = 324.

We calculated the t-statistics and p-values (by considering γ = 8 as reference)

for 3 pairwise differences namely, γ = 0.5 and 8, γ = 2 and 8, and γ = 4

and 8. From the statistical analysis, we found that all these γ’s gave almost

similar estimates as γ = 8. These results are listed in Table 4.4. The positive

values for mean indicate that those γ’s are worse than the reference gamma,

with mean for γ = 0.5 being the most positive. MAE for each of the 36 sets

of ‘discarded’ sites are shown in Figure 4.13. The thick line shows the average

MAEs obtained using the full Bayesian approach. The actual versus predicted

values are shown in figure ??. Figures 4.15 and 4.16 show the MCMC outputs

for cross-validation using actual data using the full Bayesian approach.

The output appears to be not very sensitive to the omission of a small

fraction of the observation sites.

Table 4.4: t-statistics and p-values using May data

γ pairs N Mean Std. Dev. t-stats p-value

0.5− 8 324 0.1024 1.2198 1.5111 6.539e− 02
1− 8 324 0.0435 1.0932 0.7162 2.369e− 01
3− 8 324 0.0692 0.9882 1.2605 1.038e− 01

4.4 Monthly Precipitation Map

Finally, with the MCMC estimates obtained for various model param-

eters, we constructed the precipitation map for the study region by predicting

values using kriging technique. Figure 4.18 shows the precipitation map for
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the month of February obtained using our model. The model parameters were

estimated using γ = 0.5. Figure ?? shows the precipitation map for the same

month obainted using ASOADeK model. The white patch in the lower right

corner indicates negative estimates.
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Figure 4.9: Cross-validation results using 32 different sets of ‘discarded’ sites
for simulated data.
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Figure 4.10: Cross-validation results showing actual versus predicted values for
simulated data for γ = 0.5, 1, 3, 8.
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Figure 4.11: Cross-validation results using simulated data - Markov chain val-
ues, histograms, and Auto-correlation functions of regression parameter β4 and
variogram parameter σ2.
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Figure 4.12: Cross-validation results using simulated data - Moisture flux di-
rection random fields (dashed line - true MFD RF, solid line - estimated MFD
RF), log-likelihood, and MCMC outputs for 2 observation sites.
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Figure 4.13: Cross-validation results using 36 different sets of ‘discarded’ sites
for May data.
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Figure 4.14: Cross-validation results showing actual versus predicted values for
May for γ = 0.5, 1, 3, 8.

●●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
20

40
60

80

Actual

P
re

di
ct

ed

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●



50

Figure 4.15: Cross-validation results using real data for May - Markov chain
values, histograms, and Auto-correlation functions of regression parameter β4

and variogram parameter σ2.
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Figure 4.16: Cross-validation results using real data for May - Moisture flux
direction random fields (dashed line - constant ASOADeK MFD RF, solid line
- estimated MFD RF), log-likelihood, and MCMC outputs for 2 observation
sites.
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Figure 4.17: Precipitation map for February obtained using kriging and γ = 0.5

Figure 4.18: Precipitation map for February obtained using ASOADeK (Cour-
tesy - Huade Guan).



CHAPTER 5

DISCUSSION

This chapter gives an analytical report of the results obtained using

MCMC through ‘Metropolis within Gibbs’ approach, the core framework of

the proposed model. We also present some future work that can possibly

implement this MCMC through ‘Metropolis within Gibbs’ approach to develop

more robust models.

5.1 Conclusions

What we have done:

We have implemented an extension of ASOADeK method that deals

with estimation of MFD random field, an orographic factor influencing pre-

cipitation. We developed and tested a method for estimation of such MFD

based on point precipitation data. Values of γ in the range 0.5 to 2 seem to

give reasonable MFD random field estimates and kriging maps for the studied

region. The ‘optimal’ γ depends on the region, the observation site locations,

signal to noise ratio defined as β4/σ, and on the nature of the ‘true’ MFD.

Why is that useful:

It is useful because it gives us insight into the prevailing weather

patterns through MFDs. The plots for MFD random field for different months
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follow consistent pattern for the Northern New Mexico mountainous region,

with moisture coming from Pacific coast on the west and moisture coming

from the Gulf of Mexico in south-west direction.

The model has potentially better predictive ability because of the

Bayesian framework. It can also be thought of as being ‘automatic’ in the sense

that no extensive calibration is needed except for may be γ. Previous methods

like PRISM require extensive calibration. Also, this model can be applied to

larger mountainous regions unlike ASOADeK. Hence, we can summarize the

conclusions as:

1. Hidden random field (MFD RF) method offers an alternative to existing

precipitation mapping products.

2. Bayesian nature of the method allows for ‘all in one’ estimation and great

flexibility.

5.2 Future Work

We think that more effort should be spent on the validation of the

method for larger regions (say, Switzerland, Colorado, etc.) as well as for

‘single-event’ data. We can also make the method more ‘automatic’, i.e., do

something about choosing ‘optimal’ γ and making it less dependent on other

factors. This seems to be very challenging but promising. We can choose

an anisotropic variogram function and see how the model behaves. We can

incorporate radar and satellite data and test the model. We can also develop

a ‘spatio-temporal’ extension of this method provided we have enough data

samples.



APPENDIX A

Some Probability Distributions

A.1 p-dimensional Multivariate Normal Distribution

If the random variables X1, X2, . . . , Xp have a multivariate normal

distribution, then the joint probability density function is

f(x) = (2π)−
p
2 |C|−

1
2 exp

[
−1

2
(x− µ)′C−1(x− µ)

]
(A.1)

where µ = [µ1, µ2, . . . , µp]
′ is a vector of expected values along each of the

coordinate directions of X1, X2, . . . , Xp, and C is the covariance matrix which

contains the covariances between the random variables

Ci,j = Cov(Xi, Xj) (A.2)

A.2 Scaled-Inverse χ2 Distribution

If the random variable X has a scaled-inverse χ2 distribution, then

the probability density function is

f(x) =
ν
2

ν
2

Γ( ν
2
)

(S2)
ν
2 x−( ν

2
+1) exp

[
−νS2

2x

]
(A.3)

where ν is the degrees of freedom, and νS2 is the scaling parameter.
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APPENDIX B

Matlab Codes

The various routines written in Matlab (Version - 6.5.0.180913a (R13))

are available in electronic format at

euler.nmt.edu/~olegm/MFD

.
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