Math 586. Homework 1
 Due Sept. 7 by 11pm

Note: if you are using computer, please attach or e-mail your code.

1. $Y=\ln K$, the natural logarithm of permeability, is assumed to be a normal random variable for a particular formation. If $\mathbb{E}[Y]=-4$, is the mean and $\operatorname{Var}(Y)=1.96$, is the variance, find ${ }^{1}$
(a) The probability that Y exceeds -5 .
(b) The probability that Y is between -6 and -3 .
(c) The 3rd percentile of K values (note: $K=e^{Y}$).
2. A simple model relates the percentage of petroleum recovery, R, in a given region to X, the porosity; Y, the permeability; and Z, the formation depth:

$$
R=0.7 X+800 Y-0.01 Z
$$

Random variable	X	Y	Z
Mean	40	0.02	75
St.Dev.	5	0.001	3

Find the expected value and standard deviation of R, assume that X, Y, Z are independent.
3. Mark each of the following as
i. Always true
ii. True if the random variables are independent
iii. Generally not true
(a) $\mathbb{E}[X Y Z]=\mathbb{E} X \mathbb{E} Y \mathbb{E} Z$
(b) $\mathbb{E}[8 X+5 Y+4 W]=8 \mathbb{E} X+5 \mathbb{E} Y+4 \mathbb{E} W$
(c) $\mathbb{E}\left[X^{2} / Y^{2}\right]=\mathbb{E}\left[X^{2}\right] / \mathbb{E}\left[Y^{2}\right]$
(d) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
(e) $\operatorname{Var}(X+2 Y)=\operatorname{Var}(X)+2 \operatorname{Var}(Y)$
(f) $\mathbb{E}\left[e^{X}\right]=e^{\mathbb{E} X}$

[^0]4. Calculate the variance of the sample mean \bar{X} based on the sample of identically distributed $X_{1}, X_{2}, \ldots, X_{n}$, with $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)=1$, when
(a) $n=5$, all X_{i} are independent
(b) $n=50$, all X_{i} are independent
(c) $n=5$, the correlation between X_{i} and X_{j}
equals $0.9^{|i-j|}, i, j,=1, \ldots, n$
(d) $n=5$, the correlation between X_{i} and X_{j} equals $(-0.9)^{|i-j|}$

[^0]: ${ }^{1}$ You may use Matlab's normcdf function, or pnorm function in R

