
Lecture 9: Introduction to Kriging

Math 586

Beginning remarks

Kriging is a commonly used method of interpolation (prediction) for spatial
data. The data are a set of observations of some variable(s) of interest, with
some spatial correlation present.

Usually, the result of kriging is the expected value (“kriging mean”) and vari-
ance (“kriging variance”) computed for every point within a region. Practi-
cally, this is done on a fine enough grid.

Illustration: suppose we observe some variable Z along 1-dim space (X). There
are 5 measurements made. We might ask ourselves, knowing the probabilistic
behavior of the random field being observed, what are possible trajectories
(realizations) of the random field, that agree with the data? This is answered
by conditional simulation. In Fig. 1, you see two sets of 5 conditional simula-
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Other 5 realizations: higher krig. variance

Figure 1: Conditional simulations, data given by dots

tions for the same data. The one on the left is for one value of σ2= variance
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of the random field, the one on the right is for another, higher, value. All the
realizations are faithful to the data, but also faithful to the statistical model
for the random field (i.e. mean and variogram) that we selected.

Kriging mean for every location can be thought of as the average of the whole
ensemble of possible realizations, conditioned on data. Kriging variance is the
variance of that ensemble. (The ensemble is of course infinite, we only show 5
of its representatives.)

You may see that the trajectories tend to diverge away from the observed data,
that is, the kriging variance increases. Also, for the random field with higher
variance (the one on the right in Fig. 1)

We will observe similar qualitative behavior frequently in the future.

Simple kriging (SK)

Let us observe some stationary (WSS) random field V (x) at some points xj,
j = 1, ..., n. First, assume that the mean m and covariance function C(·) of
this process are known. The case of prediction with the known mean is often
called simple kriging.

In order to better understand what happens and to devise an extendable ap-
proach, let’s attack the question by directly trying to minimize MSE.

We will seek an estimate V̂0 of the value of V at the point x0. For simplicity,
denote Vj := V (xj). Also, denote C(i, j) = Cov(Vi, Vj).

We may assume that the mean m = 0. Otherwise, subtract m from all of the
Vj values, estimate V0, then add the mean back.

Search for the estimate of the form

V̂0 =
n∑

j=1

λjVj,

under the assumption of 0 mean, it is automatically unbiased. (Why?)

We will find the kriging weights λj that minimize MSE:

MSE = E
[(
V0 −

∑
λjVj

)2]
= V ar

(
V0 −

∑
λjVj

)
= (Why?)

= V ar(V0)− 2
∑

λjCov(V0, Vj) +
∑∑

λjλiCov(Vi, Vj)

That is,

MSE = C(0, 0)− 2
∑

λjC(0, j) +
∑∑

λjλiC(i, j) (1)
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where C(i, j) = CV (xi−xj) might be interpreted as the elements of covariance
matrix C. Note that the values C(0, j) depend on the location x0.

To minimize MSE, we take the derivatives with respect to λk and equate to 0:

∂ MSE

∂λk
= −2C(0, k) + 2λkC(k, k) + 2

∑
j 6=k

λjC(k, j) = 0, k = 1, ..., n

That is, solve the system of equations1

n∑
j=1

λjC(k, j) = C(0, k), k = 1, ..., n (2)

In matrix form, the above equations look like

Cλ = b same as λ = C−1b (3)

If we denote the covariance matrix of the vector (V0, V1, ..., Vn)′ as Σ, then

Σ =

[
σ2
0 b′

b C

]
and MSE= σ2

SK = C(0, 0)−2λ′b+λ′Cλ = C(0, 0)−λ′b

Now compare the equation (3) with the formula for conditional mean in Lec-
ture 6, p. 4. It turns out that the above minimization argument is directly
related to the BLUE theory for multivariate Normal!

To avoid ambiguity, we will sometimes denote the optimal kriging weights
λSK. From the equations (1) and (2), the optimal kriging variance is

σ2
SK = C(0, 0)−

∑
λSKj C(0, j) (4)

Compare this to the conditional variance formula from Lecture 6.

What happens when you “predict” at one of the existing points xj? It is
clear that the best choice is to just take Vj, in which case the kriging variance
is 0! If we use the covariance function such that C(h) → C(0)σ2 as |h| → 0,
that is, dealing with a continuous random field (no nugget!), then we should
obtain

lim
x0→xj

V̂ (x0) = Vj and σ2
SK → 0

1Note that we really did not use the assumption of WSS stationarity, since we allowed
C(i, j) to vary with location xi. We don’t have to assume a constant mean m, either, and
can replace it by varying values mi, as long as these are known.
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A simple case:

Suppose that C(i, j) = 0, i 6= j, only C(0, j) 6= 0, j = 1, ..., n. In this case,
the kriging equations (2) are solved by

λj =
C(0, j)

C(j, j)
= ρ0,j

σ0
σj
,

where ρ0,j is the correlation coefficient. We obtain the prediction

V̂0
σ0

=
∑

ρ0,j
Vj
σj

That is, the weights reflect the strength of correlation. This reminds us of
simple linear regression.

Also,

σ2
SK = σ2

0(1−
∑

ρ20,j)

where we recognize the quantity
∑
ρ20,j as coefficient of determination R2!

(Question: why
∑
ρ20,j ≤ 1 ?)

Summary:

• Kriging is an exact interpolator (it preserves the observations) when
there’s no nugget effect.

• Kriging weights λj depend only on locations and covariance function C,
not on data.

• Kriging variance also depends on locations and C only.

• Kriging is a smooth predictor (if two points are close, then their kriging
estimates are close).

• In MVN case, SK is the optimal predictor in the mean square sense
(follows from MVN theory).

• Computationally, we only need to find the matrix C−1 once, then, as we
vary the location, we will only vary vector b in (3)
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Example

Northern NM precipitation, January log-model residuals

The covariance function used in kriging is C(h) = 0.1144e−h/10.4451, with the
practical range of about 30. One look at the kriging st. dev. map tells us that
we cannot reliably predict the precipitation (at least for January) in-between
the stations.
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Ordinary kriging (OK)

The next issue will be estimating the mean m, which we assumed known in
simple kriging.
Option 1: first, estimate mean from the observations, then apply SK.
Option 2: do both at the same time (Ordinary kriging).

Option 1: We could try and estimate m by simply averaging the observa-
tions, but this does not take into account the correlations between Vj. For
example, if two locations are close together, and there is spatial continuity,
then we have effectively one observation instead of two.
This will require a Generalized least square approach, discussed later.

Option 2: To keep the estimate unbiased, we need

m = E [V0] =
∑

λjE [Vj] =
∑

λjm

Thus, we need
∑
λj = 1.

MSE is still expressed by (1), and we need to minimize it.
We will apply Lagrange multiplier method of constrained optimization: mini-
mize the function

F (λ, µ) = MSE− 2µ(
∑

λj − 1)

where µ is the Lagrange multiplier. Taking partials with respect to λk and µ
and equating them to 0, we will get a system of equations{ ∑

λOKj C(k, j) − µ = C(0, k), k = 1, ..., n∑
λOKj = 1

In matrix form:
C(1, 1) . . . C(1, n) −1
C(2, 1) . . . C(2, n) −1

. . . . . . . . . . . .
C(n, 1) . . . C(n, n) −1

1 . . . 1 0




λ1
λ2
. . .
λn
µ

 =


C(0, 1)
C(0, 2)
. . .

C(0, n)
1


The kriging variance is, similarly to (4),

σ2
OK = C(0, 0)−

∑
λOKj C(0, j) + µ

Overall, σ2
OK is slightly higher than σ2

SK because of higher uncertainty associated
with estimating m.
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Example – continued

Let’s zoom in on a portion of NM precipitation map: the locations marked are
stations close to the point x0 = 470, y0 = 4010, marked by ×.

Comparing kriging st.dev. at that point, σSK = 0.2778, σOK = 0.2779, and
maximum possible is σ =

√
C(0, 0) = 0.3382.

The kriging weights λj were sorted according to their absolute values and the
first 10 are:

lambda_SK lambda_OK point no.

[1,] 0.3551 0.3569 8

[2,] 0.3443 0.3455 14

[3,] 0.0527 0.0544 64

[4,] 0.0283 0.0306 45

[5,] 0.0279 0.0295 77

[6,] 0.0117 0.0135 15

[7,] 0.0103 0.0126 63

[8,] 0.0090 0.0109 5

[9,] -0.0036 -0.0020 25

[10,] -0.0025 -0.0005 49

Generally, closer points get higher weights. Notice, though, that 15 is
masked by the presence of 14, and some stations get negative weights!
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