Lecture 5: Conditioning. Multivariate Normal Distribution.

Math 586

Conditioning

Conditional distribution of Y given X = x describes probabilistic behavior of Y when a value of X is known. If X and Y are not independent it means that X contains some information about Y. Example: given the reflectance value x from a satellite measurement, we can guess roughly what the soil moisture Y is.

Let f(x, y) = joint density, $f_X(x)$, $f_Y(y)$ - marginals. We have $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ and similarly for $f_Y(y)$.

Define **conditional density** $f(y | x) = \frac{f(x, y)}{f_X(x)}$ then $f(x, y) = f(y | x)f_X(x)$

Discrete case: conditional PMF $p(y | x) = \frac{P(X = x, Y = y)}{P(X = x)}$...(*)

Conditional expectation: $\mathbb{E}(Y | X = x)$ is the integral

$$\mathbb{E}\left[Y \mid X = x\right] = \int_{-\infty}^{\infty} y f(y|x) \, dy = H(x) \quad \text{is some function of } x$$

Discrete case: sums are used.

Note: if X and Y are independent, then $f(y | x) = f_Y(y)$ and $\mathbb{E}(Y | X = x) = \mathbb{E}(Y)$

Example 1.

Given the probability tabl	Given	the	probability	table
----------------------------	-------	-----	-------------	-------

 -					
	Υ	3	4	5	marginal of X
$\mathbf{X} = 0$.2	.1	0	0.3
X = 1		.1	.2	.1	0.4
X = 2		0	.2	.1	0.3
marginal of Y		0.3	0.5	0.2	1

Find p(y | X = 1), $\mathbb{E}(Y | X = 1)$.

Solution: Applying formula (*), we get

Υ	3	4	5	Total				
$p(y \mid X = 1)$.1/.4 = 0.25	.2/.4 = 0.5	.1/.4 = 0.25	1				
Then, $\mathbb{E}(Y X = 1) = 3 * 0.25 + 4 * 0.5 + 5 * 0.25 = 3$								

Example 2.

Suppose that, instead of specifying the joint density f(x, y), we define Y in a conditional way:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

where the error ε is independent of X and $\mathbb{E}(\varepsilon) = 0$. Then

$$\mathbb{E}\left(Y \mid X = x\right) = \beta_0 + \beta_1 x + \mathbb{E}\left(\varepsilon \mid X = x\right) = \beta_0 + \beta_1 x$$

Prediction

For two r.v. X, Y, what is the "best" prediction of Y given X?

Depends on what one means by "best". One possibility: minimum MSE (mean square error). That is, if $\mathcal{F}(X)$ is the predictor of Y then find \mathcal{F} that minimizes MSE $= \mathbb{E} \left[(Y - \mathcal{F}(X))^2 \right].$

First, consider a simpler question: for a single r.v. Y, what is the best predictor that minimizes MSE, that is, find constant a such that $\mathbb{E}[(Y-a)^2] \mapsto \min$. Answer:

$$\mathbb{E}\left[(Y-a)^2\right] = \mathbb{E}\left[(Y-\mu+\mu-a)^2\right] = \mathbb{E}\left[(Y-\mu)^2\right] + 2\mathbb{E}\left[(Y-\mu)(\mu-a)\right] + (\mu-a)^2 = \\ = \mathbb{E}\left[(Y-\mu)^2\right] + (\mu-a)^2,$$

where $\mu = \mathbb{E}[Y]$. The minimum is reached when $a = \mu$.

A similar argument shows that the best predictor of Y given X = x is conditional expectation:

$$\mathcal{F}(x) = \mathbb{E}\left[Y \,|\, X = x\right]$$

Also, the same extends to vectors (when X is replaced by \mathbf{X}).

Note: $\hat{Y} = \mathbb{E}[Y | X = x]$ is automatically an **unbiased** predictor of Y, that is $\mathbb{E}(\hat{Y} | X = x) = \hat{Y} = \mathbb{E}(Y | X = x)$, for every possible x.

The prediction MSE is also called **conditional variance** Var[Y | X = x].

BLUEs and BLUPs

BLUE = Best Linear Unbiased Estimator, BLUP = B.L.U. Predictor. We are inter $ested in the predictor <math>\hat{Y}$ of unknown quantity Y.

Unbiased means that $\mathbb{E}(\hat{Y} | \mathtt{data}) = \mathbb{E}(Y | \mathtt{data}).$

Spatial prediction: consider the case when $Y = Y_1$ and $\mathbf{X} = (Y_2, Y_3, ..., Y_n)'$ where Y_i is the observation of some random quantity ("random field") at the geographical location $\boldsymbol{\xi}_i$.

The BLUP of Y_1 can be obtained from the covariance matrix Σ of vector $\mathbf{Y} = (Y_1, Y_2, Y_3, ..., Y_n)$ (see below).

Question: when is the best linear predictor i.e. $\hat{Y}_1 = a_1 + a_2Y_2 + a_3Y_3 + \ldots + a_nY_n$ also the **best** predictor i.e. $\mathbb{E}(Y_1 | Y_2, Y_3, \ldots, Y_n)$?

Important case: Y is Multivariate Normal.

Multivariate Normal Distribution (MVN)

Univariate:

$$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\} = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(y-\mu)\sigma^{-2}(y-\mu)\right\}$$

Generalize: $\mathbf{Y} \in \mathbb{R}^n$, $\mathbb{E}(\mathbf{Y}) = \boldsymbol{\mu} = (\mu_1, ..., \mu_n)'$.

Let $Var(\mathbf{Y}) = \mathbf{\Sigma} = (\sigma_{ij})$ be $n \times n$ matrix called variance or variance-covariance matrix of vector \mathbf{Y} , so that $\sigma_{ij} = Cov(Y_i, Y_j)$. Let also $det(\mathbf{\Sigma}) = |\mathbf{\Sigma}|$ be the determinant.

Then

$$f(\mathbf{y}) = \frac{1}{\sqrt{|\boldsymbol{\Sigma}|} (2\pi)^{n/2}} \exp\left\{-\frac{1}{2} (\mathbf{y} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu})\right\}$$

where ' is the transposition and Σ^{-1} = inverse matrix.

Example: when $Y_1, Y_2, ..., Y_n$ are independent and $Var(Y_j) = \sigma_j^2$ then $\Sigma = diag\{\sigma_1^2, ..., \sigma_n^2\}$. In this case, can prove that the MVN density is the product of marginals. Vice versa, if **Y** is MVN and its variance matrix is diagonal, then all $Y_1, Y_2, ..., Y_n$ are mutually independent.¹

¹Of course, generally uncorrelated RV's are not necessarily independent.

MVN density, correlation = 0.8

Alternative Definition: **Y** is MVN iff $\sum_{i=1}^{n} b_i Y_i$ is a univariate Normal for every set of $\{b_i\}_{i=1}^{n}$ (not all 0's). Often useful.

Properties of MVN

- a. Each component Y_i is univariate Normal with mean μ_i and variance σ_{ii} .
- b. Any subset of vector \mathbf{Y} is also MVN, with variance matrix being a sub-matrix of $\boldsymbol{\Sigma}$.
- c. If $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2)$ is MVN then conditional $f(\mathbf{Y}_1 | \mathbf{Y}_2 = \mathbf{y}_2)$ is also MVN.
- d. $\mathbb{E}(\mathbf{Y_1} | \mathbf{Y_2})$ is linear in $\mathbf{Y_2}$. [See (1) below.]
- e. Any linear combination of *independent* MVN is also MVN, i.e. for *n*-vector μ_0 and constants $\beta_1, ..., \beta_m$ (not all 0),

$$\mathbf{Y} := \boldsymbol{\mu}_0 + \sum_{i=1}^m \beta_i \mathbf{Y}_i$$
 is *n*-dimensional MVN.

Lemma. For any random vector **Y** its variance matrix Σ is symmetric and positive semidefinite, i.e. for each *n*-vector **b**, **b**' Σ **b** ≥ 0 .

Proof: Let r.v. $X = \mathbf{b}' \mathbf{Y} = \sum_i b_i Y_i$. Then

$$0 \le Var(X) = \sum_{i} b_i^2 Var(Y_i) + \sum_{i} \sum_{j \ne i} b_i b_j Cov(Y_i, Y_j) = \mathbf{b}' \, \mathbf{\Sigma} \, \mathbf{b}.$$

Examples:

3) Let $\mathbf{Y} = (Y_1, Y_2, Y_3, Y_4)'$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} & \sigma_{24} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} & \sigma_{34} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44} \end{bmatrix}$$

then $(Y_1, Y_3)'$ is MVN with variance matrix

$$\boldsymbol{\Sigma}_{13} = \left[\begin{array}{cc} \sigma_{11} & \sigma_{13} \\ \sigma_{31} & \sigma_{33} \end{array} \right]$$

and $Y_2 - Y_3$ is univariate Normal with variance ... (see Lemma above, use $\mathbf{b} = (0, 1, -1, 0)'$).

4) Let $\mathbf{Y} = (Y_1, Y_2)$ with variance matrix

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

Then

$$\mathbb{E}(Y_1 | Y_2 = y_2) = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} (y_2 - \mu_2),$$
(1)

$$Var(Y_1 | Y_2 = y_2) = \sigma_1^2 (1 - \rho^2)$$
(2)

Surprisingly, the conditional variance does not depend on y_2 !

Exercise. Prove (1), (2) by using the ratio formula for conditional density.

General case Let $\mathbf{Y} = (\mathbf{Y}'_1, \mathbf{Y}'_2)'$ with mean vector $\boldsymbol{\mu} = (\boldsymbol{\mu}'_1, \boldsymbol{\mu}'_2)'$ and variance matrix

$$\mathbf{\Sigma} = \left[egin{array}{cc} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array}
ight]$$

Then $f(\mathbf{Y}_1 | \mathbf{Y}_2 = \mathbf{y}_2)$ is MVN with mean

$$\mathbb{E}\left(\mathbf{Y}_1 \mid \mathbf{Y}_2 = \mathbf{y}_2\right) = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{y}_2 - \boldsymbol{\mu}_2) \qquad \dots (**)$$

and conditional var/covar

$$\boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$$

does **not** depend on \mathbf{y}_2 .

Note: if $\boldsymbol{\mu} = \mathbf{0}$ then $\mathbb{E}(\mathbf{Y}_1 | \mathbf{Y}_2 = \mathbf{y}_2) = \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{y}_2$. If we seek **B** such that

$$\mathbb{E}\left(\mathbf{Y}_{1} \,|\, \mathbf{Y}_{2} = \mathbf{y}_{2}\right) = \mathbf{B}\mathbf{y}_{2}$$

then $\mathbf{B} = \Sigma_{12} \Sigma_{22}^{-1}$. Thus, the bext unbiased estimator of \mathbf{Y}_1 given \mathbf{y}_2 is a *linear* function of \mathbf{y}_2 .

Note: be careful. Sometimes the distribution can degenerate, for example normal distribution on a line $y_2 = a + b y_1$ is not MVN. Make sure that the variance matrix Σ is positive-definite, in particular $|\Sigma| \neq 0$.

Note: The formula (**) can also be used in non-Normal case, as a formula for finding BLUP. If we set $\mathbf{Y}_1 = Y_1$ and $\mathbf{Y}_2 = (Y_2, Y_3, ..., Y_n)'$ then the BLUP of Y_1 given $\mathbf{Y}_2 = \mathbf{y}_2$ is

$$\hat{Y}_1 = \mu_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{y}_2 - \boldsymbol{\mu}_2)$$