Lecture 5: Conditioning. Multivariate Normal Distribution.

Math 586

Conditioning

Conditional distribution of Y given $X=x$ describes probabilistic behavior of Y when a value of X is known. If X and Y are not independent it means that X contains some information about Y. Example: given the reflectance value x from a satellite measurement, we can guess roughly what the soil moisture Y is.

Let $f(x, y)=$ joint density, $f_{X}(x), f_{Y}(y)$ - marginals. We have $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y$ and similarly for $f_{Y}(y)$.

Define conditional density $f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}$ then
$f(x, y)=f(y \mid x) f_{X}(x)$
Discrete case: conditional PMF $p(y \mid x)=\frac{P(X=x, Y=y)}{P(X=x)}$
Conditional expectation: $\mathbb{E}(Y \mid X=x)$ is the integral

$$
\mathbb{E}[Y \mid X=x]=\int_{-\infty}^{\infty} y f(y \mid x) d y=H(x) \quad \text { is some function of } x
$$

Discrete case: sums are used.
Note: if X and Y are independent, then $f(y \mid x)=f_{Y}(y)$ and $\mathbb{E}(Y \mid X=x)=\mathbb{E}(Y)$

Example 1.

Given the probability table

	Y	3	4	5
marginal of X				
$\mathrm{X}=0$.2	.1	0	0.3
$\mathrm{X}=1$.1	.2	.1	0.4
$\mathrm{X}=2$	0	.2	.1	0.3
marginal of Y	0.3	0.5	0.2	1

Find $p(y \mid X=1), \mathbb{E}(Y \mid X=1)$.
Solution: Applying formula (${ }^{*}$), we get

Y	3	4	5	Total
$p(y \mid X=1)$	$.1 / .4=0.25$	$.2 / .4=0.5$	$.1 / .4=0.25$	1

Then, $\mathbb{E}(Y \mid X=1)=3 * 0.25+4 * 0.5+5 * 0.25=3$

Example 2.

Suppose that, instead of specifying the joint density $f(x, y)$, we define Y in a conditional way:

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon
$$

where the error ε is independent of X and $\mathbb{E}(\varepsilon)=0$. Then

$$
\mathbb{E}(Y \mid X=x)=\beta_{0}+\beta_{1} x+\mathbb{E}(\varepsilon \mid X=x)=\beta_{0}+\beta_{1} x
$$

Prediction

For two r.v. X, Y, what is the "best" prediction of Y given X ?
Depends on what one means by "best". One possibility: minimum MSE (mean square error). That is, if $\mathcal{F}(X)$ is the predictor of Y then find \mathcal{F} that minimizes MSE $=\mathbb{E}\left[(Y-\mathcal{F}(X))^{2}\right]$.

First, consider a simpler question: for a single r.v. Y, what is the best predictor that minimizes MSE, that is, find constant a such that $\mathbb{E}\left[(Y-a)^{2}\right] \mapsto$ min. Answer:
$\mathbb{E}\left[(Y-a)^{2}\right]=\mathbb{E}\left[(Y-\mu+\mu-a)^{2}\right]=\mathbb{E}\left[(Y-\mu)^{2}\right]+2 \mathbb{E}[(Y-\mu)(\mu-a)]+(\mu-a)^{2}=$

$$
=\mathbb{E}\left[(Y-\mu)^{2}\right]+(\mu-a)^{2},
$$

where $\mu=\mathbb{E}[Y]$. The minimum is reached when $a=\mu$.
A similar argument shows that the best predictor of Y given $X=x$ is conditional expectation:

$$
\mathcal{F}(x)=\mathbb{E}[Y \mid X=x]
$$

Also, the same extends to vectors (when X is replaced by \mathbf{X}).
Note: $\hat{Y}=\mathbb{E}[Y \mid X=x]$ is automatically an unbiased predictor of Y, that is $\mathbb{E}(\hat{Y} \mid X=x)=\hat{Y}=\mathbb{E}(Y \mid X=x)$, for every possible x.

The prediction MSE is also called conditional variance $\operatorname{Var}[Y \mid X=x]$.

BLUEs and BLUPs

BLUE $=$ Best Linear Unbiased Estimator, BLUP $=$ B.L.U. Predictor. We are interested in the predictor \hat{Y} of unknown quantity Y.

Unbiased means that $\mathbb{E}(\hat{Y} \mid$ data $)=\mathbb{E}(Y \mid$ data $)$.

Spatial prediction: consider the case when $Y=Y_{1}$ and $\mathbf{X}=\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)^{\prime}$ where Y_{i} is the observation of some random quantity ("random field") at the geographical location $\boldsymbol{\xi}_{i}$.

The BLUP of Y_{1} can be obtained from the covariance matrix $\boldsymbol{\Sigma}$ of vector $\mathbf{Y}=$ $\left(Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}\right)$ (see below).

Question: when is the best linear predictor i.e. $\hat{Y}_{1}=a_{1}+a_{2} Y_{2}+a_{3} Y_{3}+\ldots+a_{n} Y_{n}$ also the best predictor i.e. $\mathbb{E}\left(Y_{1} \mid Y_{2}, Y_{3}, \ldots, Y_{n}\right)$?

Important case: \mathbf{Y} is Multivariate Normal.

Multivariate Normal Distribution (MVN)

Univariate:

$$
f(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(y-\mu) \sigma^{-2}(y-\mu)\right\}
$$

Generalize: $\mathbf{Y} \in \mathbb{R}^{n}, \mathbb{E}(\mathbf{Y})=\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\prime}$.
Let $\operatorname{Var}(\mathbf{Y})=\boldsymbol{\Sigma}=\left(\sigma_{i j}\right)$ be $n \times n$ matrix called variance or variance-covariance matrix of vector \mathbf{Y}, so that $\sigma_{i j}=\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$. Let also $\operatorname{det}(\boldsymbol{\Sigma})=|\boldsymbol{\Sigma}|$ be the determinant.
Then

$$
f(\mathbf{y})=\frac{1}{\sqrt{|\boldsymbol{\Sigma}|}(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}
$$

where ${ }^{\prime}$ is the transposition and $\boldsymbol{\Sigma}^{-1}=$ inverse matrix.
Example: when $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent and $\operatorname{Var}\left(Y_{j}\right)=\sigma_{j}^{2}$ then $\boldsymbol{\Sigma}=\operatorname{diag}\left\{\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right\}$. In this case, can prove that the MVN density is the product of marginals.
Vice versa, if \mathbf{Y} is MVN and its variance matrix is diagonal, then all $Y_{1}, Y_{2}, \ldots, Y_{n}$ are mutually independent. ${ }^{1}$

[^0]MVN density, correlation $=0.8$

Alternative Definition: \mathbf{Y} is MVN iff $\sum_{i=1}^{n} b_{i} Y_{i}$ is a univariate Normal for every set of $\left\{b_{i}\right\}_{i=1}^{n}$ (not all 0's). Often useful.

Properties of MVN

a. Each component Y_{i} is univariate Normal with mean μ_{i} and variance $\sigma_{i i}$.
b. Any subset of vector \mathbf{Y} is also MVN, with variance matrix being a sub-matrix of Σ.
c. If $\mathbf{Y}=\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)$ is MVN then conditional $f\left(\mathbf{Y}_{\mathbf{1}} \mid \mathbf{Y}_{\mathbf{2}}=\mathbf{y}_{2}\right)$ is also MVN.
d. $\mathbb{E}\left(\mathbf{Y}_{\mathbf{1}} \mid \mathbf{Y}_{\mathbf{2}}\right)$ is linear in \mathbf{Y}_{2}. [See (1) below.]
e. Any linear combination of independent MVN is also MVN, i.e. for n-vector $\boldsymbol{\mu}_{0}$ and constants $\beta_{1}, \ldots, \beta_{m}$ (not all 0),

$$
\mathbf{Y}:=\boldsymbol{\mu}_{0}+\sum_{i=1}^{m} \beta_{i} \mathbf{Y}_{i} \quad \text { is } n \text {-dimensional MVN. }
$$

Lemma. For any random vector \mathbf{Y} its variance matrix $\boldsymbol{\Sigma}$ is symmetric and positive semidefinite, i.e. for each n-vector $\mathbf{b}, \mathbf{b}^{\prime} \mathbf{\Sigma} \mathbf{b} \geq 0$.
Proof: Let r.v. $X=\mathbf{b}^{\prime} \mathbf{Y}=\sum_{i} b_{i} Y_{i}$. Then

$$
0 \leq \operatorname{Var}(X)=\sum_{i} b_{i}^{2} \operatorname{Var}\left(Y_{i}\right)+\sum_{i} \sum_{j \neq i} b_{i} b_{j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\mathbf{b}^{\prime} \boldsymbol{\Sigma} \mathbf{b} .
$$

Examples:

3) Let $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)^{\prime}$

$$
\boldsymbol{\Sigma}=\left[\begin{array}{llll}
\sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} & \sigma_{24} \\
\sigma_{31} & \sigma_{32} & \sigma_{33} & \sigma_{34} \\
\sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44}
\end{array}\right]
$$

then $\left(Y_{1}, Y_{3}\right)^{\prime}$ is MVN with variance matrix

$$
\boldsymbol{\Sigma}_{13}=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{13} \\
\sigma_{31} & \sigma_{33}
\end{array}\right]
$$

and $Y_{2}-Y_{3}$ is univariate Normal with variance ... (see Lemma above, use $\mathbf{b}=$ $\left.(0,1,-1,0)^{\prime}\right)$.
4) Let $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ with variance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
$$

Then

$$
\begin{gather*}
\mathbb{E}\left(Y_{1} \mid Y_{2}=y_{2}\right)=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(y_{2}-\mu_{2}\right), \tag{1}\\
\operatorname{Var}\left(Y_{1} \mid Y_{2}=y_{2}\right)=\sigma_{1}^{2}\left(1-\rho^{2}\right) \tag{2}
\end{gather*}
$$

Surprisingly, the conditional variance does not depend on y_{2} !
Exercise. Prove (1), (2) by using the ratio formula for conditional density.

General case Let $\mathbf{Y}=\left(\mathbf{Y}_{1}^{\prime}, \mathbf{Y}_{2}^{\prime}\right)^{\prime}$ with mean vector $\boldsymbol{\mu}=\left(\boldsymbol{\mu}_{1}^{\prime}, \boldsymbol{\mu}_{2}^{\prime}\right)^{\prime}$ and variance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

Then $f\left(\mathbf{Y}_{\mathbf{1}} \mid \mathbf{Y}_{\mathbf{2}}=\mathbf{y}_{2}\right)$ is MVN with mean

$$
\mathbb{E}\left(\mathbf{Y}_{1} \mid \mathbf{Y}_{2}=\mathbf{y}_{2}\right)=\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right) \quad \ldots(* *)
$$

and conditional var/covar

$$
\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
$$

does not depend on \mathbf{y}_{2}.
Note: if $\boldsymbol{\mu}=\mathbf{0}$ then $\mathbb{E}\left(\mathbf{Y}_{1} \mid \mathbf{Y}_{2}=\mathbf{y}_{2}\right)=\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{y}_{2}$. If we seek \mathbf{B} such that

$$
\mathbb{E}\left(\mathbf{Y}_{1} \mid \mathbf{Y}_{2}=\mathbf{y}_{2}\right)=\mathbf{B} \mathbf{y}_{2}
$$

then $\mathbf{B}=\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}$. Thus, the bext unbiased estimator of \mathbf{Y}_{1} given \mathbf{y}_{2} is a linear function of \mathbf{y}_{2}.

Note: be careful. Sometimes the distribution can degenerate, for example normal distribution on a line $y_{2}=a+b y_{1}$ is not MVN. Make sure that the variance matrix $\boldsymbol{\Sigma}$ is positive-definite, in particular $|\boldsymbol{\Sigma}| \neq 0$.

Note: The formula ${ }^{\left({ }^{* *}\right) \text { can also be used in non-Normal case, as a formula for find- }}$ ing BLUP. If we set $\mathbf{Y}_{1}=Y_{1}$ and $\mathbf{Y}_{2}=\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)^{\prime}$ then the BLUP of Y_{1} given $\mathbf{Y}_{2}=\mathbf{y}_{2}$ is

$$
\hat{Y}_{1}=\mu_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right)
$$

[^0]: ${ }^{1}$ Of course, generally uncorrelated RV's are not necessarily independent.

