
Lecture 5: Conditioning. Multivariate Normal
Distribution.

Math 586

Conditioning

Conditional distribution of Y given X = x describes probabilistic behavior of Y when
a value of X is known. If X and Y are not independent it means that X contains
some information about Y . Example: given the reflectance value x from a satellite
measurement, we can guess roughly what the soil moisture Y is.

Let f(x, y)= joint density, fX(x), fY (y) - marginals. We have fX(x) =
∫∞
−∞ f(x, y)dy

and similarly for fY (y).

Define conditional density f(y |x) =
f(x, y)

fX(x)
then

f(x, y) = f(y |x)fX(x)

Discrete case: conditional PMF p(y |x) =
P (X = x, Y = y)

P (X = x)
. . . (∗)

Conditional expectation: E (Y |X = x) is the integral

E [Y |X = x] =

∫ ∞
−∞

y f(y|x) dy = H(x) is some function of x

Discrete case: sums are used.

Note: if X and Y are independent, then f(y |x) = fY (y) and E (Y |X = x) = E (Y )

Example 1.

Given the probability table

Y 3 4 5 marginal of X
X = 0 .2 .1 0 0.3
X = 1 .1 .2 .1 0.4
X = 2 0 .2 .1 0.3

marginal of Y 0.3 0.5 0.2 1
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Find p(y |X = 1), E (Y |X = 1).

Solution: Applying formula (*), we get

Y 3 4 5 Total
p(y |X = 1) .1/.4 = 0.25 .2/.4 = 0.5 .1/.4 = 0.25 1

Then, E (Y |X = 1) = 3 ∗ 0.25 + 4 ∗ 0.5 + 5 ∗ 0.25 = 3
�

Example 2.

Suppose that, instead of specifying the joint density f(x, y), we define Y in a condi-
tional way:

Y = β0 + β1X + ε

where the error ε is independent of X and E (ε) = 0. Then

E (Y |X = x) = β0 + β1x+ E (ε |X = x) = β0 + β1x

�

Prediction

For two r.v. X, Y , what is the “best” prediction of Y given X?
Depends on what one means by “best”. One possibility: minimum MSE (mean
square error). That is, if F(X) is the predictor of Y then find F that minimizes MSE
= E [(Y −F(X))2].

First, consider a simpler question: for a single r.v. Y , what is the best predictor that
minimizes MSE, that is, find constant a such that E [(Y − a)2] 7→ min. Answer:

E [(Y − a)2] = E [(Y − µ+ µ− a)2] = E [(Y − µ)2] + 2E [(Y − µ)(µ− a)] + (µ− a)2 =

= E [(Y − µ)2] + (µ− a)2,

where µ = E [Y ]. The minimum is reached when a = µ.

A similar argument shows that the best predictor of Y given X = x is condi-
tional expectation:

F(x) = E [Y |X = x]

Also, the same extends to vectors (when X is replaced by X).

Note: Ŷ = E [Y |X = x] is automatically an unbiased predictor of Y , that is

E (Ŷ |X = x) = Ŷ = E (Y |X = x), for every possible x.

The prediction MSE is also called conditional variance V ar[Y |X = x].
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BLUEs and BLUPs

BLUE = Best Linear Unbiased Estimator, BLUP = B.L.U. Predictor. We are inter-
ested in the predictor Ŷ of unknown quantity Y .

Unbiased means that E (Ŷ | data) = E (Y | data).

Spatial prediction: consider the case when Y = Y1 and X = (Y2, Y3, ..., Yn)′

where Yi is the observation of some random quantity (“random field”) at the geo-
graphical location ξi.

The BLUP of Y1 can be obtained from the covariance matrix Σ of vector Y =
(Y1, Y2, Y3, ..., Yn) (see below).

Question: when is the best linear predictor i.e. Ŷ1 = a1 + a2Y2 + a3Y3 + ...+ anYn
also the best predictor i.e. E (Y1 |Y2, Y3, ..., Yn)?

Important case: Y is Multivariate Normal.

Multivariate Normal Distribution (MVN)

Univariate:

f(y) =
1

σ
√

2π
exp

{
−(y − µ)2

2σ2

}
=

1

σ
√

2π
exp

{
−1

2
(y − µ)σ−2(y − µ)

}
Generalize: Y ∈ Rn, E (Y) = µ = (µ1, ..., µn)′.

Let V ar(Y) = Σ = (σij) be n × n matrix called variance or variance-covariance
matrix of vector Y, so that σij = Cov(Yi, Yj). Let also det(Σ) = |Σ| be the determi-
nant.
Then

f(y) =
1√

|Σ|(2π)n/2
exp

{
−1

2
(y − µ)′Σ−1(y − µ)

}
where ′ is the transposition and Σ−1 = inverse matrix.

Example: when Y1, Y2, ..., Yn are independent and V ar(Yj) = σ2
j then Σ = diag{σ2

1, ..., σ
2
n}.

In this case, can prove that the MVN density is the product of marginals.
Vice versa, if Y is MVN and its variance matrix is diagonal, then all Y1, Y2, ..., Yn are
mutually independent.1

1Of course, generally uncorrelated RV’s are not necessarily independent.
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Alternative Definition: Y is MVN iff
∑n

i=1 biYi is a univariate Normal for every set
of {bi}ni=1 (not all 0’s). Often useful.

Properties of MVN

a. Each component Yi is univariate Normal with mean µi and variance σii.

b. Any subset of vector Y is also MVN, with variance matrix being a sub-matrix
of Σ.

c. If Y = (Y1,Y2) is MVN then conditional f(Y1|Y2 = y2) is also MVN.

d. E (Y1 |Y2) is linear in Y2. [See (1) below.]

e. Any linear combination of independent MVN is also MVN, i.e. for n-vector µ0

and constants β1, ..., βm (not all 0),

Y := µ0 +
m∑
i=1

βiYi is n-dimensional MVN.

Lemma. For any random vector Y its variance matrix Σ is symmetric and positive
semidefinite, i.e. for each n-vector b, b′Σ b ≥ 0.

Proof: Let r.v. X = b′Y =
∑

i biYi. Then

0 ≤ V ar(X) =
∑
i

b2iV ar(Yi) +
∑
i

∑
j 6=i

bibjCov(Yi, Yj) = b′Σ b.
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Examples:

3) Let Y = (Y1, Y2, Y3, Y4)
′

Σ =


σ11 σ12 σ13 σ14
σ21 σ22 σ23 σ24
σ31 σ32 σ33 σ34
σ41 σ42 σ43 σ44


then (Y1, Y3)

′ is MVN with variance matrix

Σ13 =

[
σ11 σ13
σ31 σ33

]
and Y2 − Y3 is univariate Normal with variance ... (see Lemma above, use b =
(0, 1,−1, 0)′).

4) Let Y = (Y1, Y2) with variance matrix

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
Then

E (Y1 |Y2 = y2) = µ1 + ρ
σ1
σ2

(y2 − µ2), (1)

V ar(Y1 |Y2 = y2) = σ2
1(1− ρ2) (2)

Surprisingly, the conditional variance does not depend on y2!

Exercise. Prove (1), (2) by using the ratio formula for conditional density.
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General case Let Y = (Y′1,Y
′
2)
′ with mean vector µ = (µ′1,µ

′
2)
′ and variance

matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Then f(Y1 |Y2 = y2) is MVN with mean

E (Y1 |Y2 = y2) = µ1 + Σ12Σ
−1
22 (y2 − µ2) . . . (∗∗)

and conditional var/covar
Σ11 −Σ12Σ

−1
22 Σ21

does not depend on y2.

Note: if µ = 0 then E (Y1 |Y2 = y2) = Σ12Σ
−1
22 y2. If we seek B such that

E (Y1 |Y2 = y2) = By2

then B = Σ12Σ
−1
22 . Thus, the bext unbiased estimator of Y1 given y2 is a linear

function of y2.

Note: be careful. Sometimes the distribution can degenerate, for example normal
distribution on a line y2 = a + b y1 is not MVN. Make sure that the variance matrix
Σ is positive-definite, in particular |Σ| 6= 0.

Note: The formula (**) can also be used in non-Normal case, as a formula for find-
ing BLUP. If we set Y1 = Y1 and Y2 = (Y2, Y3, ..., Yn)′ then the BLUP of Y1 given
Y2 = y2 is

Ŷ1 = µ1 + Σ12Σ
−1
22 (y2 − µ2)
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