Lecture 4: Multiple Linear Regression

Math 586

Trends/ Multiple Regression

"Response" = function of space, time etc.
e.g. Water level in space, Ore grade vs. position, porosity in 3 dimensions etc.

Let $\mathbf{x}=\left(x_{1}, x_{2}\right)$ - location. $y(\mathbf{x})=$ response (variable of interest).
Data: $\left(x_{1 i}, x_{2 i}\right), y_{i}, \quad i=1, \ldots, N$

$$
\begin{aligned}
& y_{i}=\text { Model mean }+ \text { error } \\
& \text { Model mean }=m\left(\mathbf{x}_{i} ; \boldsymbol{\beta}\right),
\end{aligned}
$$

where $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\prime}=$ parameter vector (typically unknown).
Goal: estimate "trend" $m(\mathbf{x} ; \boldsymbol{\beta})$ or $\boldsymbol{\beta}$ based on observations.

Additive model

$$
\begin{gathered}
y_{i}=m\left(\mathbf{x}_{i} ; \boldsymbol{\beta}\right)+\varepsilon_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i} \\
i=1, \ldots, N
\end{gathered}
$$

That is, trend $m(\mathbf{x} ; \boldsymbol{\beta})$ is a linear function.
"Errors" (residuals) ε_{i} are random:
$-\mathbb{E}\left(\varepsilon_{i}\right)=0$

- may or may not be independent
$-\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$ or maybe $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma_{i}^{2}$.
Possible extension: $m(\mathbf{x} ; \boldsymbol{\beta})$ is only linear in $\boldsymbol{\beta}$, i.e.

$$
m(\mathbf{x} ; \boldsymbol{\beta})=\sum_{j=0}^{p} \beta_{j} f_{j}(\mathbf{x})
$$

where f_{j} 's are known.
Analog of Mean Square Error: Least Squares (OLS)

$$
\min _{\boldsymbol{\beta}} \sum_{i=1}^{N}\left[y_{i}-m\left(\mathbf{x}_{i} ; \boldsymbol{\beta}\right)\right]^{2}
$$

or Weighted Least Squares (WLS)

$$
\min _{\boldsymbol{\beta}} \sum_{i=1}^{N} w_{i}\left[y_{i}-m\left(\mathbf{x}_{i} ; \boldsymbol{\beta}\right)\right]^{2}
$$

with w_{i} 's given set of weights. (Weights may be used to cope with non-stationarity of errors.)

Examples

1. $m_{0}(\mathbf{x} ; \boldsymbol{\beta})=\beta_{0}$ constant, $f_{0} \equiv 1$ models intercept
2. $m_{1}(\mathbf{x} ; \boldsymbol{\beta})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$ plane. Here $f_{1}\left(\left(x_{1}, x_{2}\right)\right)=x_{1}$ and $f_{2}\left(\left(x_{1}, x_{2}\right)\right)=x_{2}$
3. $m_{2}(\mathbf{x} ; \boldsymbol{\beta})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1}^{2}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{2}^{2} \quad$ quadratic surface
4. $m^{\star}(\mathbf{x} ; \boldsymbol{\beta})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} \sin x_{1}+\beta_{4} \cos x_{1}$ periodic (e.g. to capture seasonal dependencies; note that an oscillatory function with a known period but unknown phase is a combination of sines and cosines.)

Vector-Matrix Form

$\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)^{\prime}, \boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)^{\prime}$ are column vectors.
The $N \times(p+1)$ matrix $\left(X_{i j}\right)=f_{j}\left(\mathbf{x}_{i}\right)$

$$
\mathbf{X}=\left[\begin{array}{cccc}
f_{0}\left(\mathbf{x}_{1}\right), & f_{1}\left(\mathbf{x}_{1}\right), & \ldots & f_{p}\left(\mathbf{x}_{1}\right) \\
f_{0}\left(\mathbf{x}_{2}\right), & f_{1}\left(\mathbf{x}_{2}\right), & \ldots & f_{p}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f_{0}\left(\mathbf{x}_{N}\right), & f_{1}\left(\mathbf{x}_{N}\right), & \ldots & f_{p}\left(\mathbf{x}_{N}\right)
\end{array}\right]
$$

is called design matrix.
Model becomes

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

Least Squares minimizes

$$
\begin{align*}
\text { SSE } & =\sum_{i=1}^{N}\left[y_{i}-m(\mathbf{x} ; \boldsymbol{\beta})\right]^{2}= \tag{1}\\
=\sum_{i=1}^{N}\left[y_{i}-\sum_{j=0}^{p} \beta_{j} f_{j}\left(\mathbf{x}_{i}\right)\right]^{2} & =(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})
\end{align*}
$$

Let

$$
\mathbf{S}=\mathbf{X}^{\prime} \mathbf{X}
$$

it's a $p \times p$ symmetric matrix.
Assume full rank: $|\mathbf{S}| \neq 0$, therefore \mathbf{S}^{-1} exists. Also, \mathbf{S} is positive-definite since for any p-vector \mathbf{b}

$$
\mathbf{b}^{\prime} \mathbf{S b}=\mathbf{b}^{\prime} \mathbf{X}^{\prime} \mathbf{X b}=(\mathbf{X b})^{\prime} \mathbf{X b}=\sum_{i=1}^{N}\left[(\mathbf{X b})_{i}\right]^{2} \geq 0
$$

Let $\hat{\boldsymbol{\beta}}=\mathbf{S}^{-1} \mathbf{X}^{\prime} \mathbf{y}$, then

$$
(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})+(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime} \mathbf{S}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})
$$

Thus, the min is attained when $\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}$.
<Another approach to minimizing (1) would be to set partials with respect to β_{j} 's equal to 0 and solve the resulting system. Results are equivalent to above.>

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

Example: planar case.

$$
Y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

then

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{ccc}
1 & x_{11} & x_{21} \\
1 & x_{12} & x_{22} \\
\vdots & \vdots & \vdots \\
1 & x_{1 N} & x_{2 N}
\end{array}\right] \quad \boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right) \\
\mathbf{S}=\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{ccc}
N & \sum_{i=1}^{N} x_{1 i} & \sum_{i=1}^{N} x_{2 i} \\
\sum_{i=1}^{N} x_{1 i} & \sum_{i=1}^{N} x_{1 i}^{2} & \sum_{i=1}^{N} x_{1 i} x_{2 i} \\
\sum_{i=1}^{N} x_{2 i} & \sum_{i=1}^{N} x_{1 i} x_{2 i} & \sum_{i=1}^{N} x_{2 i}^{2}
\end{array}\right] \quad \mathbf{X}^{\prime} \mathbf{y}=\left(\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} x_{1 i} y_{i} \\
\sum_{i=1}^{N} x_{2 i} y_{i}
\end{array}\right)
\end{gathered}
$$

Scaling problems: S may have a high condition number, computationally unstable. We can reparametrize: move all f_{j} to average 0 and rescale, that is, let

$$
\begin{gathered}
f_{j}^{* *}\left(\mathbf{x}_{i}\right)=\left[f_{j}\left(\mathbf{x}_{i}\right)-\bar{f}_{j}\right] / s_{j}, \quad j \geq 1, \\
f_{0}^{* *} \equiv 1 \equiv f_{0}
\end{gathered}
$$

This also has the advantage of making matrix \mathbf{S} diagonal.

Figure 1: Linear fit

Example

Median grain size y : spatial data over a regular grid (Krumbein and Graybill, 1965)

	1	2	3	4	5	6	7	8	9	10	11	12
x_{1}	0	0	0	0	25	25	25	25	50	50	50	50
x_{2}	0	10	20	30	0	10	20	30	0	10	20	30
y	0.51	0.22	0.205	0.234	0.73	0.214	0.212	0.225	0.87	0.234	0.202	0.204

$$
\begin{aligned}
& x_{1}^{*}=\left(x_{1}-\bar{x}_{1}\right) / 25 \\
& x_{2}^{*}=\left(x_{2}-\bar{x}_{2}\right) / 15
\end{aligned}
$$

Here, $\mathbf{S}^{*}=\left(\mathbf{X}^{*}\right)^{\prime} \mathbf{X}^{*}=\operatorname{diag}\{12,8,6.667\}$ and solving

$$
\mathbf{S}^{*} \hat{\boldsymbol{\alpha}}=\left(\mathbf{X}^{*}\right)^{\prime} \mathbf{y}=(4.06,0.341,-1.463)^{\prime}
$$

yields

$$
\hat{\boldsymbol{\alpha}}=(0.3383,0.04265,-0.2195)^{\prime}
$$

and the fitted model
$\hat{y}_{i}=0.3383+0.04265\left(\frac{x_{1}-25}{25}\right)-0.2195\left(\frac{x_{2}-15}{15}\right)=0.5152+0.0017 x_{1}-0.0146 x_{2}$

Figure 2: Quadratic fit $y=0.547+0.0061 x_{1}-0.046 x_{2}-0.000016 x_{1}^{2}+0.0012 x_{2}^{2}-$ $0.00024 x_{1} x_{2}$

Measure of fit

Sums of squares:

$$
\begin{gathered}
\text { SS for Errors }(\mathrm{SSE})=\sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
\operatorname{Total}(\mathrm{SST})=\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \\
\mathrm{SS}(\text { Regression })=\mathrm{SST}-\mathrm{SSE}
\end{gathered}
$$

Multiple squared correlation coefficient ("coefficient of determination") is

$$
R^{2}=S S(\text { Regression }) / S S T=1-S S E / S S T
$$

Becomes the usual r^{2} when using one predictor x.
E.g. $R^{2}=0.56$ for linear model fitted above and $R^{2}=0.93$ for quadratic model.

