Lecture 4. Multiple Linear Regression

Math 586

Trends/ Multiple Regression

“Response” = function of space, time etc.
e.g. Water level in space, Ore grade vs. position, porosity in 3 dimensions etc.

Let x = (21, x9) - location. y(x) = response (variable of interest).

Data: (z14,22;),y;, i=1,..,N

1; = Model mean + error
Model mean = m(Xz‘; 5),

where 8 = (8o, b1, ..., Bp)’ = parameter vector (typically unknown).
Goal: estimate “trend” m(x;3) or 3 based on observations.

Additive model

yi = m(x;; B) + & = Po + frxr + Poxai + &
i=1,.. N

That is, trend m(x; 3) is a linear function.
“Errors” (residuals) e; are random:

-E (81) =0

- may or may not be independent

- Var(g;) = o or maybe Var(g;) = o?.

Possible extension: m(x;3) is only linear in 3, i.e.
p
m(x;B) =Y Bifi(x)
=0
where f;’s are known.

Analog of Mean Square Error: Least Squares (OLS)
N
I%n Z[yz —m(x;; B)]
i=1

1



or Weighted Least Squares (WLS)

manwl yi —m(x; B))

with w;’s given set of weights. (Weights may be used to cope with non-stationarity
of errors.)

Examples
1. myo(x; B)
2. my(x;8) = Po+ 11 + Paxg plane. Here fi((z1,22)) = x1 and fo((x1, 22)) = 29
3. ma(x; B)

4. m*(x;8) = Bo + fi1x1 + Paxs + Pysinzy + P4 cosx; periodic (e.g. to capture
seasonal dependencies; note that an oscillatory function with a known period
but unknown phase is a combination of sines and cosines.)

= [y constant, fo = 1 models intercept

= By + 171 + Bawa + 322 + Bar1ma + P53 quadratic surface

Vector-Matrix Form

y = (y1, .-, yn), € = (¢1,...,en)" are column vectors.
The N x (p+ 1) matrix (X;;) = f;(x;)

is called design matriz.

Model becomes

y=X8+¢
Least Squares minimizes N
SSE =) [y —m(x;B)] = (1)
i=1

Z Zﬁ;fgxz (y —XB)'(y — XB).

Let
S =X'X



it’s a p X p symmetric matrix.

Assume full rank: [S| # 0, therefore S™ exists. Also, S is positive-definite since
for any p-vector b

N
b'Sb = b'’X'Xb = (Xb)'Xb = Y [(Xb);]? > 0
i=1

Let B8 = S™'X'y, then

~ A ~ A

(y =XB)(y =XB) = (y - XB)'(y - XB) + (B-8)'S (B - B)

Thus, the min is attained when 8 = 3.

<Another approach to minimizing (1) would be to set partials with respect to f;’s
equal to 0 and solve the resulting system. Results are equivalent to above.>

8= (X'X)"'XYy]|

Ezample: planar case.

Y = Bo + Bix1i + Boxa + €, t=1,..,n

then
1 z11 291
1 719 @ bo
x=|. 7" B=| 5K
S B
1 oy xon
and
N N
N D oin1 T > i1 T2i E@]\il Yi
N N 2 N
S=X'X=| ZimiTu 2T Dimg T Ty Xy = Zf\il 15 Yi
N N N 2
Zi:l To; Zz’:l T1; T2y Zi:l La; Zz]\il T2; Yi

Scaling problems: S may have a high condition number, computationally unstable.
We can reparametrize: move all f; to average 0 and rescale, that is, let

) =fix) = fil/si, i=1,

0o =1=fo

This also has the advantage of making matrix S diagonal.
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Figure 1: Linear fit

Example

Median grain size y: spatial data over a regular grid (Krumbein and Graybill, 1965)

2 3 4 5 6 7 8 9 10 11 12

1
;0 0 0 0 25 25 25 25 50 50 50 20
Ty 0 10 20 30 0 10 20 30 0 10 20 30

y 0.51 0.22 0.205 0.234 0.73 0.214 0.212 0.225 0.87 0.234 0.202 0.204
Initially, S = X'X is not diagonal. Let

.’L'I = (.’L‘l — Tl)/25
SL‘; = (SL’Q - TQ)/l'{')
Here, S* = (X*)'X* = diag{12, 8,6.667} and solving
S*a = (X*)y = (4.06,0.341, —1.463)’

yields
a = (0.3383,0.04265, —0.2195)’

and the fitted model

—25 15
7 = 0.3383+0.04265 (‘”1 = > —0.2195 (3‘"2 = ) — 0.5152+0.00172; — 0.014625

4
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Figure 2: Quadratic fit y = 0.547 + 0.0061z; — 0.046z5 — 0.0000162% + 0.001223 —
00002411711‘2

Measure of fit

Sums of squares:
N

SS for Errors (SSE) = Z(yz — ;)
i=1
N
Total(SST) = Z(yz -7

i=1
SS(Regression) = SST — SSE

Multiple squared correlation coefficient (7 coefficient of determination”) is
R? = SS(Regression)/SST =1~ SSE/SST

Becomes the usual r? when using one predictor z.
E.g. R? = 0.56 for linear model fitted above and R? = 0.93 for quadratic model.



