
Lecture 4: Multiple Linear Regression

Math 586

Trends/ Multiple Regression

“Response” = function of space, time etc.
e.g. Water level in space, Ore grade vs. position, porosity in 3 dimensions etc.

Let x = (x1, x2) - location. y(x) = response (variable of interest).

Data: (x1i, x2i), yi, i = 1, ..., N

yi = Model mean + error

Model mean = m(xi;β),

where β = (β0, β1, ..., βp)
′ = parameter vector (typically unknown).

Goal: estimate “trend” m(x;β) or β based on observations.

Additive model

yi = m(xi;β) + εi = β0 + β1x1i + β2x2i + εi

i = 1, ..., N

That is, trend m(x;β) is a linear function.
“Errors” (residuals) εi are random:

- E (εi) = 0
- may or may not be independent
- V ar(εi) = σ2 or maybe V ar(εi) = σ2

i .

Possible extension: m(x;β) is only linear in β, i.e.

m(x;β) =

p∑
j=0

βjfj(x)

where fj’s are known.

Analog of Mean Square Error: Least Squares (OLS)

min
β

N∑
i=1

[yi −m(xi;β)]2
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or Weighted Least Squares (WLS)

min
β

N∑
i=1

wi[yi −m(xi;β)]2

with wi’s given set of weights. (Weights may be used to cope with non-stationarity
of errors.)

Examples

1. m0(x;β) = β0 constant, f0 ≡ 1 models intercept

2. m1(x;β) = β0 +β1x1 +β2x2 plane. Here f1((x1, x2)) = x1 and f2((x1, x2)) = x2

3. m2(x;β) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x1x2 + β5x

2
2 quadratic surface

4. m?(x;β) = β0 + β1x1 + β2x2 + β3 sinx1 + β4 cosx1 periodic (e.g. to capture
seasonal dependencies; note that an oscillatory function with a known period
but unknown phase is a combination of sines and cosines.)

Vector-Matrix Form

y = (y1, ..., yN)′, ε = (ε1, ..., εN)′ are column vectors.
The N × (p+ 1) matrix (Xij) = fj(xi)

X =


f0(x1), f1(x1), ... fp(x1)
f0(x2), f1(x2), ... fp(x2)

...
...

. . .
...

f0(xN), f1(xN), ... fp(xN)


is called design matrix.

Model becomes
y = Xβ + ε

Least Squares minimizes

SSE =
N∑
i=1

[yi −m(x;β)]2 = (1)

=
N∑
i=1

[yi −
p∑

j=0

βjfj(xi)]
2 = (y −Xβ)′(y −Xβ).

Let
S = X′X
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it’s a p× p symmetric matrix.

Assume full rank: |S| 6= 0, therefore S−1 exists. Also, S is positive-definite since
for any p-vector b

b′Sb = b′X′Xb = (Xb)′Xb =
N∑
i=1

[(Xb)i]
2 ≥ 0

Let β̂ = S−1X′y, then

(y −Xβ)′(y −Xβ) = (y −Xβ̂)′(y −Xβ̂) + (β̂ − β)′ S (β̂ − β)

Thus, the min is attained when β = β̂.

<Another approach to minimizing (1) would be to set partials with respect to βj’s
equal to 0 and solve the resulting system. Results are equivalent to above.>

β̂ = (X′X)−1X′y

Example: planar case.

Yi = β0 + β1x1i + β2x2i + εi, i = 1, ..., n

then

X =


1 x11 x21
1 x12 x22
...

...
...

1 x1N x2N

 β =

 β0
β1
β2


and

S = X′X =


N

∑N
i=1 x1i

∑N
i=1 x2i∑N

i=1 x1i
∑N

i=1 x
2
1i

∑N
i=1 x1i x2i∑N

i=1 x2i
∑N

i=1 x1i x2i
∑N

i=1 x
2
2i

 X′y =


∑N

i=1 yi∑N
i=1 x1i yi∑N
i=1 x2i yi


Scaling problems: S may have a high condition number, computationally unstable.
We can reparametrize: move all fj to average 0 and rescale, that is, let

f ∗∗j (xi) = [fj(xi)− f j]/sj, j ≥ 1,

f ∗∗0 ≡ 1 ≡ f0

This also has the advantage of making matrix S diagonal.
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Figure 1: Linear fit

Example

Median grain size y: spatial data over a regular grid (Krumbein and Graybill, 1965)

1 2 3 4 5 6 7 8 9 10 11 12
x1 0 0 0 0 25 25 25 25 50 50 50 50
x2 0 10 20 30 0 10 20 30 0 10 20 30
y 0.51 0.22 0.205 0.234 0.73 0.214 0.212 0.225 0.87 0.234 0.202 0.204

Initially, S = X′X is not diagonal. Let

x∗1 = (x1 − x1)/25

x∗2 = (x2 − x2)/15

Here, S∗ = (X∗)′X∗ = diag{12, 8, 6.667} and solving

S∗α̂ = (X∗)′y = (4.06, 0.341,−1.463)′

yields
α̂ = (0.3383, 0.04265,−0.2195)′

and the fitted model

ŷi = 0.3383+0.04265

(
x1 − 25

25

)
−0.2195

(
x2 − 15

15

)
= 0.5152+0.0017x1−0.0146x2
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Figure 2: Quadratic fit y = 0.547 + 0.0061x1 − 0.046x2 − 0.000016x21 + 0.0012x22 −
0.00024x1x2

Measure of fit

Sums of squares:

SS for Errors (SSE) =
N∑
i=1

(yi − ŷi)2

Total(SST) =
N∑
i=1

(yi − y)2

SS(Regression) = SST− SSE

Multiple squared correlation coefficient (”coefficient of determination”) is

R2 = SS(Regression)/SST = 1− SSE/SST

Becomes the usual r2 when using one predictor x.
E.g. R2 = 0.56 for linear model fitted above and R2 = 0.93 for quadratic model.
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