Lecture 2: Probability: many variables

Math 586

Recap: (Lecture 1)

e “A random wvariable is a variable whose values are randomly generated
according to some probabilistic mechanism” - Isaaks & Srivastava

e X = random variable, z = number.
o F(z)=P(X <z)= [*_ f(t)dt (cumulative) distribution function.

e f(x) density (continuous) or P(X = x;) (discrete)

Joint distribution
o If X;,..., X, arer.v. then
F(zy,...,xy) = P(Xy <21, X5 < 29,....X,, < z,,)
is their joint distribution function.
o If F(xq,...,x,) is differentiable in each x; then

_O0"F(z1, w9, ., )
f(,fl,’l,xQ, ceey .C(}'n) - axlaanxn

is their joint density function.

o If X = (X1, Xs,...,X,,)" is a random vector (column vector, n X 1),
and subset A C R" then

PXeA) = // ---/f(xl,xg, ooy Ty) dxy dy...dxy,
A
e Expectation of a function

E[g(X1, ..., X;)] ://---/g(:pl,xz,...,xn)-f(xl,xg,...,xn)dxldxg...dzvn



e Statistical independence
Xy, ..., X, are statistically independent iff

flzy, 2, ) = fi(xr) - folxa) - e v fr(xn)

One or more r.v.’s can be functionally dependent even though they are
statistically independent.

Contour plot of some bivariate distribution Scatter plot of 1000 samples
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Estimates of Distributions

Conceptual model: Population (of all feasible observations) from which we
draw samples to estimate distribution and its properties, such as expected
value.

Example: consider a manufactured item with design engineering strength,
but actual strength varies in production. The “model strength” is a r.v. X
with distribution F'(x). We don’t know F' a priori but must estimate it from
the data.

e Estimate F(zq) based on n samples x1, s, ..., T, .g. using empirical CDF

B o) = #{ifinﬁ To}

a.k.a. ogive

e Estimate the mean strength by using sample mean

This is an estimator for E [X].



e Note: there is an important difference between the estimate (F or T)
and the true value.

e Algorithm to calculate F: sort x;’s from smallest to largest, get x7, x5, ...,z
then .

F(z) = l, 1y < <whyy

example: take n = 10 samples of porosity (in %):

34,27,15,23,21,31,26,29,16,31 reorder: = 15,16,21,23,26,27,29,31,31, 34

Empirical CDF of X
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Also, calculate sample mean 7.

Variance and Covariance

e Variance
— Let E[X] = p.
Var(X) =0 =E[(X — 1) 2nd central moment

— o is the Standard Deviation
— Also Var(X) = E[X? — 2uX + p?] = E[X?] — 2uE [X] + p* =

Var(X) = E[X?] — 12 “Computational formula for variance”



e Covariance
— Given r.v.’s Xj and Xy with means pq, uo,

Cov(X1, Xo) = E[(X1 — 1) (Xa — pi2)] = E [X1 Xo] — prapio

Note: Cov(X,Y) = /_00 /_OO (x — pe)(y — py) f(z,y) de dy

Replace integral by summation for discrete case.

— If X, and X, are statistically independent then
CO'U(Xl, XQ) =0

— Correlation coefficient between X; and X, with st.dev. o1, 09

- COU(Xl, XQ)

0102
e Variance of the sum:
Var(a; Xy + asXo) = E[(a1 X1 — a1pn + aaXo — agpn)?’] =

= alE (X1 — )°] + 3B (X — p12)?] + 201 05E (X7 — 1) (X2 — pio)] =
= a] Var(Xy) + a3 Var(Xy) + 2a1a,Cov( X1, X3)
Thus,

Var(a; Xy + agXo) = aj Var(Xy) + a3 Var(Xs) + 2a;a2Cov( X1, X5)
— If X7, X5 are independent, then Cov = 0 and
Var(a X1 + asXo) = aiVar(X,) + a3Var(Xy)

— Consider n r.v.’s, Xy, ..., X,, then
) ) ) n

Var (i: ain) = 2”: a? Var(X;) + Z Z a;a; Cov(X;, X;)

i=1 =1 i jFi

Note: kriging algorithms are based on minimizing variance of linear
combinations of r.v.’s. This expression for variance is very impor-
tant. The covariance on RHS will carry information about spatial
continuity.
n n
— If X1, X5, ..., X,, are independent, then Var (Z aiX,) = Z a? Var(X;)
i=1

=1



