Lecture 2: Probability: many variables

Math 586

Recap: (Lecture 1)

- "A random variable is a variable whose values are randomly generated according to some probabilistic mechanism" - Isaaks \& Srivastava
- $X=$ random variable, $x=$ number.
- $F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t$ (cumulative) distribution function.
- $f(x)$ density (continuous) or $P\left(X=x_{i}\right)$ (discrete)

Joint distribution

- If X_{1}, \ldots, X_{n} are r.v. then

$$
F\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)
$$

is their joint distribution function.

- If $F\left(x_{1}, \ldots, x_{n}\right)$ is differentiable in each x_{i} then

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\partial^{n} F\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{1} \partial x_{2} \ldots \partial x_{n}}
$$

is their joint density function.

- If $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}$ is a random vector (column vector, $n \times 1$), and subset $A \subset \mathbb{R}^{n}$ then

$$
P(\mathbf{X} \in A)=\iint_{A} \cdots \int f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \ldots d x_{n}
$$

- Expectation of a function

$$
\mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right)\right]=\iint \cdots \int g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \ldots d x_{n}
$$

- Statistical independence
X_{1}, \ldots, X_{n} are statistically independent iff

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) \cdot \ldots \cdot f_{n}\left(x_{n}\right)
$$

One or more r.v.'s can be functionally dependent even though they are statistically independent.

Estimates of Distributions

Conceptual model: Population (of all feasible observations) from which we draw samples to estimate distribution and its properties, such as expected value.

Example: consider a manufactured item with design engineering strength, but actual strength varies in production. The "model strength" is a r.v. X with distribution $F(x)$. We don't know F a priori but must estimate it from the data.

- Estimate $F\left(x_{0}\right)$ based on n samples $x_{1}, x_{2}, \ldots, x_{n}$, e.g. using empirical CDF

$$
\hat{F}\left(x_{0}\right)=\frac{\#\left\{x_{i} \leq x_{0}\right\}}{n} \quad \text { a.k.a. ogive }
$$

- Estimate the mean strength by using sample mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

This is an estimator for $\mathbb{E}[X]$.

- Note: there is an important difference between the estimate (\hat{F} or \bar{x}) and the true value.
- Algorithm to calculate \hat{F} : sort x_{i} 's from smallest to largest, get $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ then

$$
\hat{F}(x)=\frac{j}{n}, \quad x_{j}^{*} \leq x \leq x_{j+1}^{*}
$$

example: take $n=10$ samples of porosity (in \%):
$34,27,15,23,21,31,26,29,16,31$ reorder: $\Rightarrow 15,16,21,23,26,27,29,31,31,34$

Empirical CDF of X

Also, calculate sample mean \bar{x}.

Variance and Covariance

- Variance
- Let $\mathbb{E}[X]=\mu$.

$$
\operatorname{Var}(X)=\sigma^{2}=\mathbb{E}\left[(X-\mu)^{2}\right] \quad \text { 2nd central moment }
$$

- σ is the Standard Deviation
- Also $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}-2 \mu X+\mu^{2}\right]=\mathbb{E}\left[X^{2}\right]-2 \mu \mathbb{E}[X]+\mu^{2} \Rightarrow$

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mu^{2} \quad \text { "Computational formula for variance" }
$$

- Covariance

- Given r.v.'s X_{1} and X_{2} with means μ_{1}, μ_{2},

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{1}, X_{2}\right)=\mathbb{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=\mathbb{E}\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2} \\
& \text { Note: } \quad \operatorname{Cov}(X, Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) f(x, y) d x d y
\end{aligned}
$$

Replace integral by summation for discrete case.

- If X_{1} and X_{2} are statistically independent then

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=0
$$

- Correlation coefficient between X_{1} and X_{2} with st.dev. σ_{1}, σ_{2}

$$
\rho=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sigma_{1} \sigma_{2}}
$$

- Variance of the sum:

$$
\begin{gathered}
\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}\right)=\mathbb{E}\left[\left(a_{1} X_{1}-a_{1} \mu_{1}+a_{2} X_{2}-a_{2} \mu_{2}\right)^{2}\right]= \\
=a_{1}^{2} \mathbb{E}\left[\left(X_{1}-\mu_{1}\right)^{2}\right]+a_{2}^{2} \mathbb{E}\left[\left(X_{2}-\mu_{2}\right)^{2}\right]+2 a_{1} a_{2} \mathbb{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]= \\
=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)
\end{gathered}
$$

Thus,

$$
\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}\right)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)
$$

- If X_{1}, X_{2} are independent, then $C o v=0$ and

$$
\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}\right)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)
$$

- Consider n r.v.'s, X_{1}, \ldots, X_{n} then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+\sum_{i} \sum_{j \neq i} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Note: kriging algorithms are based on minimizing variance of linear combinations of r.v.'s. This expression for variance is very important. The covariance on RHS will carry information about spatial continuity.

- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent, then $\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)$

