
Lecture 13. Indicator Kriging

Math 586

Assumption of normality: important. Kriging may give unacceptable re-
sults if the data are severely non-normal.
Also, sometimes we need to find probabilities (e.g. contamination)

P (V (x0) ≤ a |V1, ..., Vn)

Under normality, they can be found using kriging mean = E [V (x0) |V1, ..., Vn]
and variance σ2

K = V ar[V (x0) |V1, ..., Vn]. The normal probability is found
using standard normal CDF

Φ

(
a− mean

st.dev.

)
Possible remedies for non-normality: transformation (either functional or ”nor-
mal score transform”, see Lecture 3.)

Indicator kriging: another alternative. Also can be used independently when
the data are inherently of categorical nature, e.g. vegetation type, soil type,
success/ failure in drilling etc. (More than two types may require co-kriging,
though.)

Indicator function: 0 or 1 values. For a random variable V , may define

I(a,b] =

{
1 if a < V ≤ b
0 otherwise

I(a,b] is itself a random variable. We may replace the problem of predicting
V (x) by the problem of predicting I(ai,bi] for several intervals (ai, bi].

What does the fractional value of kriging prediction Î(ai,bi](x0) signify? It’s
the probability that a < V (x0) ≤ b.

The method proceeds as follows:

• Convert the given values to indicators, for chosen intervals (ai, bi], usually
chosen to divide the range of V evenly

• Estimate the indicator variograms for each range interval.
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• Do the kriging for each range interval, using the usual equations and
obtain predictions.

Difficulties:

• will not necessarily get probabilities to add up to 1.

• sometimes the prediction may end up beyond interval [0, 1] (e.g. kriging
occasionally gives negative weights)

• loss of precision due to discretizing the range of V .

Example: rainfall prediction

We will use indicator kriging for interpolating the probability of rainfall on
given days at Sevilleta. The indicator data we will consider are 0 if no rainfall
and 1 if rainfall.

The data are collected for 10 stations in 2003. Some data are missing. The
precipitation “map” with indicators is:
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There are additional ideas that we will use: a) spatiotemporal modeling and
b) moving window.

The moving time window will be used as the “local” option within Ordinary
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Kriging. We can hardly expect the precipitation to be stationary throughout
the year!

Step 1
First, we will estimate space and time covariance functions. We will use a
separable model, that is, fit the functions separately in space and time. See
the code SevIK.m and data at Sev03.txt.

The time variograms were obtained for each station separately, and the results
are
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Note that for indicator (0-1) data the sill would be theoretically equal to
Binomial variance p(1−p), where p is the proportion of 1’s in the sample. The
above variograms appear consistent with exponential model and sill ≈ 0.11.
For simplicity, we’ll use temporal scale = 1 day. We don’t expect a nugget.

The space variograms are easier estimated using the sample covariance between
vectors of yearly observations for each pair of stations. Plotting those against
the distance, we obtain
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Again, the sill is near 0.11, which is encouraging, and we can surmise an
exponential model with spatial scale ≈ 50km.

Step 2
Now, we can compute the combined space-time covariance function for two
locations x and times t:

Cov(x1,x2; t1, t2) = σ2e−|x1−x2|/SpaceScale · e−|t1−t2|/TimeScale (1)

To obtain a kriging map for the precipitation probability, use the data within a
moving time-window ±w: to obtain a map for day T , use all the observations
(0-1 indicators) for the days T − w, ..., T, ..., T + w. The covariance matrix C
is obtained using (1) for |t1 − t2| ≤ w. Some results are below:
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Hard and Soft data

Sometimes, along with the hard data (direct observations), other information
is available: expert opinion, prior guesses etc. These so-called soft data may be
in the interval form (“I know that the porosity here is between 15 and 20%”)
or in the form of a prior probability distribution (“I know that the porosity
here follows normal distribution with the mean of 17% and st.dev. of 3%”).
Both are potentially useful for kriging and can be incorporated via indicator
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kriging.

Introduce cutoffs v1, ..., vk.

• For interval data: inequality constraints ai < V (x2i) ≤ bi. Then set
k-th indicator = 0, if vk < ai, =1 if vk > bi and undefined (no data) if
ai < vk ≤ bi.

• For prior distirbution data of the form of cumulative distribution func-
tion P (V (x3i) ≤ v) ≡ F (v;x3i) set k-th indicator simply equal to
F (v;x3i)

Use of different data types may require co-kriging.

More advanced Bayesian methods and conditional simulation may also be used.
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