
Lecture 11: Universal Kriging,
Cross-Validation, Co-Kriging

Math 586

I. Universal kriging

So far considered E [V (x)] = m constant. What if it varies, m = m(x)?

Option 1. Estimate m(x) using regression or other data, then simple krig-
ing.

Option 2. Use ordinary kriging but only for neighboring data (“moving win-
dow” technique)

Option 3. Universal kriging: estimate both trend and kriging weights in one
step. (Assumes that we know the “true” covariance function or variogram.)

Option 4. Difference the data to remove trend (IRF-k, k > 0), then oper-

ate on the differences. For example, if V (x) = ax+ Ṽ (x) with Ṽ (x) being an
IRF-0, then

V (x+ h)− V (x) = ah︸︷︷︸ + Ṽ (x+ h)− Ṽ (x)︸ ︷︷ ︸ .
const stationary

Consider Option 3:
Universal kriging with W (x) = V (x)−m(x) is stationary or an IRF-0.

Assumption:

m(x) =
L∑
l=0

alfl(x), with known functions fl(x) and unknown al’s.

For example, for polynomial trend f0(x) = 1, f1(x) = x1, f2(x) = x2,
f3(x) = x1x2 etc. as in regression modeling. Functions fl can also be some
other variables, observed at locations x (“external drift”). As usual, we will
need L << n.
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Let CW (h) = Cov[W (x + h),W (x)].
Consider linear estimator

V̂0 =
n∑

j=1

λjV (xj), then E (V̂0) = m(x0) =
n∑

j=1

λjm(xj)

is an unbiasedness constraint, leads to L+ 1 equations

m(x0) =
L∑
l=0

alfl(x0) =
n∑

j=1

λjm(xj) =
n∑

j=1

λj

L∑
l=0

alfl(xj)

therefore,
L∑
l=0

alfl(x0) =
L∑
l=0

al

n∑
j=1

λjfl(xj)

for any combination of al’s, therefore

fl(x0) =
n∑

j=1

λjfl(xj) (1)

L+ 1 constraints that lead to L+ 1 Lagrange multipliers. Lagrange function

H(λ1, ..., λn;µ0, ..., µL) = MSE− 2
L∑
l=0

µl

[
n∑

j=1

λjfl(xj)− fl(x0)

]
,

where MSE = E
[
(V̂ − V (x0))

2
]

= E
[(∑

λjW (xj)−W (x0)
)2]

because of constraints (1). Thus,

MSE = CW (0, 0)−2
∑

λjCW (0, j)+
∑∑

λjλiCW (i, j) = σ2
W−2λ′b+λ′CWλ

This leads to kriging equations

n∑
j=1

λjCW (xk − xj) = CW (xk − x0) +
L∑
l=0

µlfl(xk), k = 1, ..., n

fl(x0) =
n∑

j=1

λjfl(xj) l = 0, ..., L

(Note: if L = 0 and f0(x) = 1 we will get ordinary kriging)

2



Main problem: how do we estimate CW (xk − xj) ?? Maybe, through the
iterative process: fit regression, estimate variogram of residuals, re-fit regres-
sion etc.
Another, more complicated option, is to use maximum likelihood to simulta-
neously estimate both the trend and variogram parameters.

Option 2.(local):

Paper by Journel & Rossi (Math. Geol. v.21(7)-1989, pp. 715-739) considered
Universal kriging vs. using moving neighborhoods.

When estimating V (x0), use only the points in the ellipse (anisotropy)

(x1 − x10)2

a2
+

(x2 − x20)2

b2
≤ 1

or (another choice) nearest N∗ points.
Points far from x0 contribute little, allow “local” mean to be used.
This method is simpler to use, and can do localized covariance estimators ⇒
not much use for universal kriging algorithm.
Kitanidis (p. 71): critique of moving neighborhoods.

Generalized Least Squares (GLS) (Option 1.)
Universal kriging is equivalent to first fitting the regression, then using simple
kriging (see e.g. Deutsch and Journel, 1997). However, with residuals corre-
lated, the ordinary least squares (OLS) is no longer the optimal technique!
To understand this, recall ordinary kriging and how, in order to estimate the
mean, you need to adjust the weights to account for correlation between the
data, e.g. clustering effect.

Suppose that the data y (or the residuals, after the trend is removed) have
the covariance matrix C. The GLS estimate minimizes the quantity (y −
Xβ)′C−1(y−Xβ) found in the multivariate normal likelihood (with Σ = C),
and the solution is

β̂GLS = (X′C−1X)−1X′C−1y (2)

When the data are uncorrelated, C = σ2I, we get the ordinary Least Squares,
β̂OLS = (X′X)−1X′y.

For example, when we estimate the mean m, you can cast this as a re-
gression problem with no predictors, intercept only: ŷi = β0. Then, X =
1 = (1 1 ... 1)′, and the GLS estimate of the mean is obtained using (2).
This estimate will coincide with the ones we computed for ordinary kriging in
Lab 3!
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II. Cross-Validation

Important to make sure that e.g. the variogram model is chosen correctly
and it “fits well”.
Steps: given the estimated variogram,

1. Exclude point i

2. Krige, using all other data, only to get the prediction V̂ ∗i and krig. st.dev.
σ∗i .

3. Compute standardized residuals Zi = [V (xi) − V̂ ∗i ]/σ∗i , they should be
standard Normal, with mean 0 and variance 1.

4. examine the residuals for distribution, spatial patterns, outliers etc.

The residuals are not independent ⇒ there isn’t really a rigorous test.
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III. Co-Kriging

Two random fields, observations on both, predict one. E.g., permeability and
porosity ⇒ predict permeability.

Observe: V1(x1i), i = 1, ..., n1, V2(x2k), k = 1, ..., n2.
Predict: V1(x0)

Need cross-covariances as well as covariances:

C11(x,y) = Cov[V1(x), V1(y)] C22(x,y) = Cov[V2(x), V2(y)]
C12(x,y) = Cov[V1(x), V2(y)] = C21(y,x)

Assume that the means are constant but unknown: EV1(x) = m1, EV2(x) =
m2.
Objective: estimate V1(x0) via

V̂ =

n1∑
i=1

λ1iV1(x1i) +

n2∑
i=1

λ2iV2(x2i),

with unbiasedness constraints

n1∑
i=1

λ1i = 1,

n2∑
i=1

λ2i = 0.

MSE will contain both covariance and cross-covariance terms, use 2 Lagrange
multipliers etc. etc. resulting in Ordinary Cokriging equations

n1∑
i=1

λ1iC11(x1i,x1j) +

n2∑
k=1

λ2k C12(x1j,x2k) = C11(x1j,x0) + µ1, j = 1, ..., n1

n1∑
i=1

λ1iC12(x1i,x2j) +

n2∑
k=1

λ2k C22(x2k,x2j) = C12(x0,x2j) + µ2, j = 1, ..., n2

n1∑
i=1

λ1i = 1

n2∑
k=1

λ2k = 0

Issue: estimation of cross-covariance.

Application: kriging using block data.

Observe V2(x) =

∫
B

g(y)V1(x + y) dy, with g a weighting function, say∫
B

g(x) dx = 1.
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Typically, g is an even function: g(x) = g(−x) and B is some neighborhood
of 0. [E.g. pump test for transmissivity.]
Now, covariances and cross-covariances are expressed in terms of V1(x), i.e.

Cov[V1(x1), V2(x2)] =

∫
B

g(y)C11(x1,y + x2) dy Point to Block

Cov[V2(x1), V2(x2)] =

∫
B

∫
B

g(y1)C11(x1 + y1,x2 + y2) g(y2) dy1 dy2

Block to Block
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