
Lecture 10: Kriging Extensions

Math 586

Example for Ordinary Kriging.

Consider 5 points sampled from a 1-d random field with known covariance function
C(h) = exp(−|h|/`), with scale parameter ` = 0.1
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Ordinary kriging, cov. length = 0.1
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Plot shows kriging mean ± one st.dev.; broken line = estimate of the mean; circles
are observation points and the choppy line is the actual (unobserved) process.

However, if we knew the value of the mean, we could use simple kriging. This will
decrease kriging variance σ2

K , but what happens when the mean is incorrect? See the
next Figure.
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Simple kriging, mean = −1, cov. length = 0.1
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Other relevant data: locations 0.230 0.254 0.541 0.562 0.774
observations 0.138 0.307 -0.125 0.963 -0.136

C-matrix:

1.0000 0.7857 0.0439 0.0356 0.0042
0.7857 1.0000 0.0559 0.0453 0.0054
0.0439 0.0559 1.0000 0.8097 0.0962
0.0356 0.0453 0.8097 1.0000 0.1188
0.0042 0.0054 0.0962 0.1188 1.0000

Estimate of the mean: m̂ = 0.1648 with weights λj = 0.1926, 0.1744, 0.1719, 0.1536, 0.3075.
Note the higher weight for the observation #5 that stands alone.
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I. Extension to IRF-0

Covariance may not exist.
To the definition of IRF-0 add one more requirement:

(i) EV (x) = const

(ii) γ(h) = 1
2
E [V (x + h)− V (x)]2 is independent of x

(iii) V ar [
∑J

j=0 αjV (xj)] exists (is finite)

for every J , set of xj and every set of αj such that
∑
αj = 0.∑

αjV (xj) represents “allowable” linear combinations. Even though V ar(V (x)) may
not exist, V ar(

∑
αjV (xj)) does. For example, can you express V ar[V (x)− V (y)]?

As another example, if
∑n

j=1 λj = 1 then we require

V ar[V (x0)−
n∑

j=1

λjV (xj)] is finite.

Lemma.

Cov [V (xi)− V (x0), V (xj)− V (x0)] = γ(xi − x0) + γ(xj − x0)− γ(xi − xj)

(1)

Proof. Consider

Cov[V (xi)− V (x0), V (xj)− V (x0)] = E
{
I[V (xi)− V (x0)][V (xj)− V (x0)]

}
.

Then,
γ(xi − xj) =

1

2
E [V (xi)− V (xj)]

2 =
1

2
E
{
I[V (xi)− V (x0)]− [V (xj)− V (x0)]

}2
=

=
1

2
E
{
I[V (xi)− V (x0)]

2 + [V (xj)− V (x0)]
2 − 2[V (xi)− V (x0)][V (xj)− V (x0)]

}
=

= γ(xi − x0) + γ(xj − x0)− E
{
I[V (xi)− V (x0)][V (xj)− V (x0)]

}
Now consider kriging equations to find best linear unbiased predictor:

Linear V̂ =
n∑

j=1

λjV (xj)

Unbiased E (V̂ ) = m ⇒
n∑

j=1

λjm = m or
n∑

j=1

λj = 1.

MSE = E [V̂ − V (x0)]
2 = E

{
n∑

j=1

λj[V (xj)− V (x0)]

}2

=
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=
n∑

k=1

n∑
j=1

λk E
{
I[V (xk)− V (x0)][V (xj)− V (x0)]

}
λj = using (1)

=
n∑

k=1

n∑
j=1

λk[γ(xk − x0)]λj +
n∑

k=1

n∑
j=1

λk[γ(xj − x0)]λj −
n∑

k=1

n∑
j=1

λk[γ(xk − xj)]λj

Finally (argh), we obtain

MSE = 2
n∑

j=1

λjγ(xj − x0)−
n∑

j=1

n∑
i=1

λiλjγ(xi − xj) (2)

Again, minimize with the constraint that
∑n

j=1 λj = 1. Using Lagrange multiplier µ,
minimize

H(λ1, ..., λn;µ) = MSE− 2µ

[
n∑

j=1

λj − 1

]
,

take partials with respect to λi, µ and equate to 0:

2γ(xi − x0)− 2
n∑

j=1

λjγ(xi − xj)− 2µ = 0, therefore

n∑
j=1

λjγ(xj − xi) = γ(xi − x0)− µ, i = 1, ..., n and

n∑
j=1

λj = 1

Kriging error, using (2), is σ2
OK =

n∑
j=1

λjγ(xj − x0) + µ

Note: If we use γ(xi − xj) = C(0, 0) − C(i, j) in stationary case, then get back
to ordinary kriging equations from last Lecture.

In matrix form: let Γ be a matrix with entries γij = γ(xi − xj). Let also 1 =
(1, 1, ..., 1)′ an n-vector of ones, U is the n × n matrix of ones, and a = vector of
γ(xi − x0).
Then

OK using variogram[
Γ 1
1′ 0

](
λ
µ

)
=

(
a
1

) OK using covariance[
C −1
1′ 0

](
λ
µ

)
=

(
b
1

)
,

keeping in mind Γ = σ2U−C and a = σ21− b.
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II. Nugget effect

Now: allow for measurement error.
First, let V (xj) be WSS stationary, Cov[V (x + h), V (x)] = CV (h).

Measurements: Ṽj := V (xj) +Wj, j = 1, ..., n

where Wj represent measurement errors (think residuals for regression) and

E (Wj) = 0, V ar(Wj) = σ2
W ,

and Wj are independent of each other and everything else.
Goal: predict V (x0) (and not V (x0) +W0). Now

C̃(i, j) ≡ CṼ (i, j) = Cov[V (xi) +Wi, V (xj) +Wj] =

{
CV (xi − xj) if i 6= j
CV (0) + σ2

W if i = j

Ordinary kriging equations apply, but the C-matrix changes.

Not an exact interpolator, smoothing effect. Also note the increase in kriging vari-
ance.
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Ordinary kriging, cov. length = 0.1, nugget Var = 0.5
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The result for IRF-0 is similar. The effect of adding noise on (semi)variogram is

γ̃(h) = γ(h) + σ2
W , h 6= 0
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III. Block kriging

Sometimes we get weighted averages of the data:

Vave(x) =

∫ b

a

g(x− y)V (y) dy

(say in 1-d), g is some averaging function.
E.g. pump test, ore grade data averaged over some volume etc.

Say, observations are

Wj =

∫ bj

aj

V (y) dy, j = 1, ..., n

and we need to predict

W0 =

∫ b0

a0

V (y) dy

Let E [V (x)] = const = m and Cov[V (x+ ξ), V (x)] = CV (ξ).

Consider CW (i, k) = Cov(Wi,Wk) - will depend on CV , and

E (Wj) =

∫ bj

aj

E [V (y)] dy = m[bj − aj]

Consider predictor

Ŵ0 =
n∑

j=1

λjWj,

unbiasedness condition is

E (W0) = m(b0 − a0) = E (Ŵ0) hence
n∑

j=1

λj[bj − aj] = b0 − a0.

Kriging equations are simple, constraint differs:
n∑

j=1

λjCW (j, k)− µ[bk − ak] = CW (0, k), k = 1, ..., n

n∑
j=1

λj[bj − aj] = b0 − a0.

To compute CW , use double integral

Cov[Wj,Wk] =

∫ bj

aj

∫ bk

ak

CV (x, y) dx dy
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may be messy to find.

In higher dimensions: x is l-dim. vector, Bj is a region in l-space (l = 1, 2, 3).

Wj =

∫∫
Bj

V (y) dy,

Cov[Wj,Wk] =

∫∫
Bj

∫∫
Bk

CV (x− y) dx dy

Now the kriging equations become{ ∑n
j=1 λjCW (j, k)− µ|Bk| = CW (0, k), k = 1, ..., n∑n

j=1 λj|Bj| = |B0|,

where |Bk| is the size of region k.
Also, kriging variance

σ2
BK = CW (0, 0)−

n∑
j=1

λjCW (j, 0) + µ|B0|

Can also krige V (x0) based on Wj’s: consider later under co-kriging.
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