Lecture 1: Introduction. Basic probability

Math 586

Course objectives: (after Allan Gutjahr)

- to model variations that occur in space
- to examine applicable data analysis methods
- to develop procedures for estimation
- to study methods that can recreate variations that may occur

Course outline:

- review of probability/statistics
- methods for variability of independent observations (ANOVA, regression)
- random fields and variograms
- kriging (spatial prediction)
- stochastic simulation

Geo. data:

- considered as random variables sampled over space (2-d, 3-d) or time (1-d) or both.
- usually correlated (classical statistics: independent)
- point observation, block observation; hard and soft data.

Software:

- Matlab for low-level matrix routines, calculations etc.
- GSLIB - a collection of Fortran-based routines (see Deutsch and Journel, 1998)
- geoR package for R

Literature:

- Kitanidis, Introduction to Geostatistics: Applications in Hydrogeology, Cambridge University Press, 1997
- Caers, Petroleum Geostatistics, SPE, 2005
- Chilès and Delfiner, Geostatistics: Modeling Spatial Uncertainty, Wiley, 1999.
- Deutsch and Journel, Gslib: Geostatistical Software Library and User's Guide, Oxford University Press, 2nd ed., 1997. '
- Isaaks and Srivastava, Applied Geostatistics, Oxford University Press, 1997
- Ribeiro and Diggle, Model-based Geostatistics, Springer, 2007.
- Wackernagel, Multivariate Geostatistics Springer, 3rd ed., 2003
- Wikle, Zammit-Mangion and Cressie, Spatio-Temporal Statistics with R Chapman \& Hall/CRC, 2019; free download at https://spacetimewithr.org

Considering both structure and randomness

Consider a spatial process, say the thickness of a geological unit, denoted by $U(x)$, where U is a random variable representing thickness and x is spatial location, in Cartesian coordinates. Suppose you observe thickness at some location x_{0}, what can you say about the thickness at some nearby location, say $x_{0}+h$?

Say, given $U\left(x_{0}\right)=2 m, \quad U\left(x_{0}+1 m\right)=?$
Some relationship is to be expected. It is both random and "predictable".
Our aim is to characterize and explain variation and use it to

- Predict, extrapolate and/or interpolate using its statistical features, and
- Reconstruct plausible "histories", "images" or realizations of variables, including the ones honoring the observations.

Probability Review - one variable

- Random variables (r.v.) - "chance magnitude"

Use capital letters (X, Y, V, \ldots) for r.v.'s and lowercase letters (x, y, v, \ldots) for their particular (e.g. observed) values.

- Descriptors:
- Continuous vs. discrete
- Probability density (PDF) vs. cumulative distribution functions (CDF): $f(x)=d F(x) / d x$ (continuous)
- Single r.v. (marginal distribution) vs. Joint
- Example

Consider an exponential model of travel time of a particle in the environment

Let $T=$ time (say, in hours) that a particle spends in a mobile phase. Then

$$
\text { PDF: } \quad f(t)=\left\{\begin{array}{cc}
\frac{1}{100} \exp (-t / 100) & t \geq 0 \\
0 & t<0
\end{array}\right.
$$

Probability that mobile phase time exceeds 75 hours is
$P(T>75)=\int_{75}^{\infty} \frac{\exp (-t / 100)}{100} d t=\exp (-75 / 100)=1-F(75)=0.472$,
where the $\operatorname{CDF} F(t)=P(T \leq t)=1-\exp (-t / 100)$.
Probability that mobile phase time is between 50 and 150 hours is

$$
P(50<T<150)=\int_{50}^{150} \frac{\exp (-t / 100)}{100} d t=F(150)-F(50)=0.383
$$

- Commonly used r.v.'s:

Uniform, Exponential, Normal(and Lognormal), Binomial

- Summary measures: Expectation, $\mathbb{E}[\cdot]$

A theoretical average.

$$
\begin{aligned}
& \hline \mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f(x) d x \text { (continuous) } \\
& \mathbb{E}[X]=\sum_{\text {all } i} x_{i} P\left(X=x_{i}\right) \quad \text { (discrete) }
\end{aligned}
$$

Expectation of a function:

$$
\begin{aligned}
& \mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) \cdot f(x) d x \text { (continuous) } \\
& \mathbb{E}[g(X)]=\sum_{\text {all } i} g\left(x_{i}\right) P\left(X=x_{i}\right) \text { (discrete) }
\end{aligned}
$$

provided that the integral or sum exists. Note that $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$.

- Example:

Let $R=$ rainfall (m) in a region of the Earth.

$$
\text { PDF: } \quad f(r)=\left\{\begin{array}{cc}
6 r(1-r) & 0 \leq r \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

The expected rainfall is

$$
\mathbb{E}[R]=\int_{0}^{1} r \cdot f(r) d r=\int_{0}^{1} r \cdot 6 r(1-r) d r=0.5 m
$$

Suppose that crop yield (metric tons $/$ hectare $)=70 \sqrt{r}$. Then the expected yield is

$$
\begin{aligned}
\mathbb{E}[70 \sqrt{R}] & =\int_{0}^{1} 70 \sqrt{r} \cdot f(r) d r=\int_{0}^{1} 70 \sqrt{r} \cdot 6 r(1-r) d r= \\
& =70 \cdot 6 \cdot\left[\frac{2}{5} r^{5 / 2}-\frac{2}{7} r^{7 / 2}\right]_{0}^{1}=48 \mathrm{tons}
\end{aligned}
$$

This is not the same as $70 \sqrt{\mathbb{E}[R]}$.
Question: what is the probability that yield is below 50 tons?

- Moments of $X: n$-th moment is $\mathbb{E}\left[X^{n}\right]$.
- Properties of expected values:

1. $\mathbb{E}[a X+b]=a \mathbb{E}[x]+b$
2. $\mathbb{E}\left[X_{1}+X_{2}+\ldots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\ldots+\mathbb{E}\left[X_{n}\right]$
"Expectation of a sum is the Sum of expectations."
3. If X_{1}, \ldots, X_{n} are statistically independent and $g_{1}\left(x_{1}\right), \ldots, g_{n}\left(x_{n}\right)$ are functions then

$$
\mathbb{E}\left[g_{1}\left(X_{1}\right) \cdot g_{2}\left(X_{2}\right) \cdot \ldots \cdot g_{n}\left(X_{n}\right)\right]=\mathbb{E}\left[g_{1}\left(X_{1}\right)\right] \cdot \mathbb{E}\left[g_{2}\left(X_{2}\right)\right] \cdot \ldots \cdot \mathbb{E}\left[g_{n}\left(X_{n}\right)\right]
$$

