Midterm Exam Name (please print) _____

Math 483, Fall 2017 October 19, 2017

Show work and correct notation for full credit. Give numerical or simple fraction answers whenever possible.

Problem	1	2	3	4	5	6	Total
Earned							
Possible	10	10	10	10	10	10	50

Solve 5 problems out of 6. Cross one out.

- 1. (a) Does the sequence $X_n \sim \text{Exponential}(mean = 1/n)$ converge in probability? If no, explain why not. If yes, find the limit and explain why the sequence converges to it.
 - (b) Give an example of something converging in distribution to a non-trivial distribution (i.e. not a point mass).
- **2.** Let $X_1, ..., X_n$ be an i.i.d. sample from Poisson distribution with parameter (mean) θ , with n = 45 and $\overline{X} = 36.6$. Find a **92**% C.I. for θ .
- **3.** Let $X_i \sim \mathcal{N}(0, var = 5)$. Find $Var(X_1 X_2)$ assuming:
 - (a) X_i are independent
 - (b) $corr(X_1, X_2) = 0.5$
- 4. (a) Explain how CLT implies that Gamma distribution with "large" α is approximately Normal.
 - (b) Write the normal approximation for $X \sim Gamma(\alpha = 100, \beta = 1)$
 - (c) Use Delta-method to find the approximate distribution for \sqrt{X} .

5. (a) Two random samples of graduates from two different universities were compared, and their average starting salaries were as follows

Sample	Size	Mean	St.Dev.
1	55	\$50,556	\$6,872
2	40	\$48,372	\$7,039

Obtain a 98% confidence interval for the difference between the "true" starting salaries of the two universities.

(b) The *skewness* is defined as

$$\kappa = \frac{\mathbb{E}\left[(X - \mathbb{E}X)^3\right]}{[Var(X)]^{3/2}}$$

It measures the degree of asymmetry in the distribution. Normal distribution, for example, has $\kappa = 0$. Show that for any *a* and *b*, $\kappa(a + bX) = \kappa(X)$.

- 6. True or False? Explanations are not necessary, but they won't hurt.
 - (a) If the correlation coefficient between two random variables X_1 and X_2 is 0, then they must be independent.

(b)
$$\tilde{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n+1}}$$
 is a consistent estimate of standard devation σ .

- (c) Let \hat{p}_n be the sample proportion based on a sample of 0/1 outcomes $X_1, ..., X_n$, with $p = P(X_i = 1), 0 .$ $Then <math>\hat{p}_n$ is an asymptotically normal estimate of p.
- (d) Sample mean is more resistant to outliers (unusually high or low observations) than the sample median.
- (e) If $\hat{\theta}_n$ is an unbiased estimate of θ , then $\hat{\theta}_n^2$ is an unbiased estimate of θ^2 .