Final practice

Math 483 Fall 2019.

- **1.** Suppose $X_1, ..., X_n \sim \text{Poisson}(\lambda_1), Y_1, ..., Y_n \sim \text{Poisson}(\lambda_2)$ and n = 25. The sample observations yielded $\overline{X} = 7.3$ and $\overline{Y} = 5.1$.
 - (a) Find a 95% confidence interval for $\lambda_1 \lambda_2$, based on Normal approximation.
 - (b) Based on the above CI, do you believe that $\lambda_1 = \lambda_2$?
 - (c) Perform the Wald test for $H_0: \lambda_1 = \lambda_2$. Find the p-value.
- **2.** For the Exponential (mean $= \theta$) distribution
 - (a) Find the MLE for θ (assume $\theta > 0$).
 - (b) Find the Fisher information.
 - (c) Find the 95% confidence interval for θ , based on a sample of size n = 100, and $\sum_{i=1}^{100} X_i = 4132$.
 - (d) Perform the Likelihood Ratio test for $H_0: \theta = 40$
- **3.** X_1, X_2, X_3 are identically distributed with mean 0 and variance 2. Find $Var(\overline{X})$ when:
 - (a) $\{X_i\}$ are independent
 - (b) $corr(X_i, X_j) = -0.5, i \neq j.$

4. MISC

- (a) The MLE for the mean of the exponential distribution was 2.35. Find the MLE for the median of this distribution.
- (b) Are the following estimation problems regular? Explain. i. $X_1, ..., X_n \sim^{i.i.d.} \text{Uniform}[-\theta, \theta]$
 - ii. $X_1, ..., X_n \sim^{i.i.d.} \texttt{Exponential}(\theta)$
- (c) Find the MLE for Uniform $[-\theta, \theta]$
- 5. Bayes
 - (a) Suppose $X \sim \mathcal{N}(\theta, \text{Var} = 2)$, and the prior for θ is $\mathcal{N}(0, \text{Var} = 5)$. Find the posterior distribution for θ . Find numerical values for X = 1.
 - (b) Given $X \sim \text{Binomial}(n = 10, p)$ and the prior distribution for p equals Uniform[0, 1], what is the posterior distribution? Find the posterior mean in case X = 3.
 - (c) Suppose that $X \sim \text{Exponential}(\beta = 1/\theta)$ and the prior $f(\theta) \propto 1/\theta$, for $\theta > 0$. Find the posterior distribution of θ . Find the posterior mean.
- 6. Consistent, unbiased, asymptotically Normal and plug-in estimates.
- 7. Highlights from Exams 1 and 2.