Final practice

Math 483 Fall 2019.

1. Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}\left(\lambda_{1}\right), Y_{1}, \ldots, Y_{n} \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ and $n=25$. The sample observations yielded $\bar{X}=7.3$ and $\bar{Y}=5.1$.
(a) Find a 95% confidence interval for $\lambda_{1}-\lambda_{2}$, based on Normal approximation.
(b) Based on the above CI, do you believe that $\lambda_{1}=\lambda_{2}$?
(c) Perform the Wald test for $H_{0}: \lambda_{1}=\lambda_{2}$. Find the p-value.
2. For the Exponential (mean $=\theta$) distribution
(a) Find the MLE for θ (assume $\theta>0$).
(b) Find the Fisher information.
(c) Find the 95% confidence interval for θ, based on a sample of size $n=100$, and $\sum_{i=1}^{100} X_{i}=4132$.
(d) Perform the Likelihood Ratio test for $H_{0}: \theta=40$
3. X_{1}, X_{2}, X_{3} are identically distributed with mean 0 and variance 2 . Find $\operatorname{Var}(\bar{X})$ when:
(a) $\left\{X_{i}\right\}$ are independent
(b) $\operatorname{corr}\left(X_{i}, X_{j}\right)=-0.5, i \neq j$.
4. MISC
(a) The MLE for the mean of the exponential distribution was 2.35 . Find the MLE for the median of this distribution.
(b) Are the following estimation problems regular? Explain.
i. $X_{1}, \ldots, X_{n} \sim^{\text {i.i.d. }}$ Uniform $[-\theta, \theta]$
ii. $X_{1}, \ldots, X_{n} \sim^{\text {i.i.d. }}$ Exponential (θ)
(c) Find the MLE for Uniform $[-\theta, \theta]$
5. Bayes
(a) Suppose $X \sim \mathcal{N}(\theta, \operatorname{Var}=2)$, and the prior for θ is $\mathcal{N}(0, \operatorname{Var}=5)$. Find the posterior distribution for θ. Find numerical values for $X=1$.
(b) Given $X \sim \operatorname{Binomial}(n=10, p)$ and the prior distribution for p equals Uniform $[0,1]$, what is the posterior distribution? Find the posterior mean in case $X=3$.
(c) Suppose that $X \sim \operatorname{Exponential}(\beta=1 / \theta)$ and the prior $f(\theta) \propto 1 / \theta$, for $\theta>0$. Find the posterior distribution of θ. Find the posterior mean.
6. Consistent, unbiased, asymptotically Normal and plug-in estimates.
7. Highlights from Exams 1 and 2.
