
Likelihood ratio tests

Math 483

1 LR tests for one parameter

Likelihood methods are useful for testing hypotheses, for example

H0 : θ = θ0

H1 : θ 6= θ0

The inference proceeds as follows:

1. Compute the likelihood, according to a chosen model f(x; θ), with the value of
L(θ0).

2. Compute the MLE θ̂, and its likelihood, L(θ̂). Find likelihood ratio Λ = L(θ̂)/L(θ0) .

Note that Λ ≥ 1.

3. Let λ ≡ 2 log Λ = 2(logL(θ̂) − logL(θ0)). For large sample sizes, under null
hypothesis H0, λ follows chi-square distribution with one degree of freedom.

Explanation: suppose we estimate the mean of a Normal distribution θ = µ, with known
variance σ2. The MLE is known to be X. Then, from the Student’s theorem,

√
n(X − µ)

σ
(1)

is N (0, 1). On the other hand,

2(logL(X)− logL(µ)) =
1

σ2

[
n∑
i=1

(Xi − µ)2 −
n∑
i=1

(Xi −X)2

]
.

After some algebra, it simplifies to
n

σ2
(
X − µ

)2
. But this is exactly the square of (1), and

is therefore χ2(1).

In general, we can quote Theorem 10.22 on p. 164 from the textbook.

The proof of Theorem 10.22 depends on the ability to approximate log likelihood with an

upside-down parabola, and therefore on the finite value of Fisher information I(θ). Thus,

the regularity assumptions are necessary.
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(d) We will reject H0 in favor of H1, whenever λ > χ2
1−α(1), where χ2

1−α is the
1− α quantile of chi-square distribution (R command qchisq(1-α,1)).
(χ2

0.9 ≈ 2.7 is shown)
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Example: Suppose X1, ..., Xn are i.i.d. from Poisson(θ). Find

Λ =
n∏
i=1

e−θ0+θ̂
(
θ0

θ̂

)Xi

,

−2 log Λ = 2n(θ0 − θ̂) + 2(log θ̂ − log θ0)
∑

Xi (2)

Recall that the MLE for Poisson is again X. Thus, the expression (2) simplifies to

−2 log Λ = 2n[(θ0 −X) + (logX − log θ0)X].

Example data: suppose that the average number of equipment failures in the past has
been known to be θ0 = 2.5 failures per week. After introducing new equipment, we
observed number of failures for 10 randomly chosen weeks and obtained the sample
0, 7, 5, 4, 3, 2, 0, 1, 3, 4. Assume the Poisson model for number of failures. The sample
mean is X = 2.9 (later we’ll see that X is a sufficient statistic for this model, that is,
we only need to know X to draw our inferences).

Set the hypotheses

H0 : θ = 2.5 “average number of failures remained the same”

H1 : θ 6= 2.5 “average number of failures has changed”

We then compute λ = −2 log Λ = 0.608. If we used the critical region approach, we’d
reject H0 at the level α = 0.05 whenever λ > χ2

0.95(1) = 3.84. Thus, we accept H0(no
change).
If we use the p-value approach, we can find p-value=P (χ2 > λ) = 1− pchisq(0.608, 1) =
0.4355.
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Looking at the plot, the difference in heights between the two values is not large
enough to be significant.
Question: would we have rejected H0 : θ = 2.0 based on this data?

R code:

X <- c(0, 7, 5, 4, 3, 2, 0, 1, 3, 4)

lpois <- function(th){

sum(log(dpois(X,th)))

}

xc <- seq(2,4, 0.1)

yc <- xc

nx <- length(xc)

for (i in 1:nx){

yc[i] <- lpois(xc[i])

}

plot(xc,yc, type="o", main="Log likelihood for Poisson example", xlab=expression(theta),

ylab = expression(logL(theta)))

lines(c(2.9,2.9), c(-30,-20), lty = 4)

lines(c(2.5,2.5), c(-30,-20), lty = 2)
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2 Multi-dimensional case

Suppose now that the likelihood depends on k parameters, θ = (θ1, ..., θk). Let the
null hypothesis be given in terms of q independent constraints:

H0 : g1(θ) = a1, ..., gq(θ) = aq

H1 : not all gj(θ) = aj

As an example, consider a goodness-of-fit test (Section 10.4). Let θ1, ..., θk be propor-
tions of observations in each of k categories. This will correspond to a classification table
with k cells, with the constraint

∑k
j=1 θj = 1.

Then, the null hypothesis that all of the proportions are equal can be expressed as

H0 : θ1 = p01, ... θk = p0k, (3)

that is, for functions gj(θ) = θj . However, the additional constraint
∑k

j=1 θj = 1 makes

one of the equations in H0 redundant. Thus, here q = k − 1.

Now, consider constrained likelihood, that is, find θ0 that solves

maximize l(θ)

subject to g1(θ) = a1, ..., gq(θ) = aq

The procedure of testing H0 is then:

• Compute constrained θ0 and unconstrained MLE θ̂.

• Consider likelihood ratio Λ = L(θ0)/L(θ̂) (it’s always ≤ 1).

• λ = −2 log Λ has, for large n, approximate chi-square distribution with q degrees
of freedom.

• Reject H0 at the level α whenever λ > χ2
1−α(q). The p-value=P (χ2 > λ) =

1− pchisq(λ, q).
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