Likelihood ratio tests

Math 483

1 LR tests for one parameter

Likelihood methods are useful for testing hypotheses, for example

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}: \theta \neq \theta_{0}
\end{aligned}
$$

The inference proceeds as follows:

1. Compute the likelihood, according to a chosen model $f(x ; \theta)$, with the value of $L\left(\theta_{0}\right)$.
2. Compute the MLE $\hat{\theta}$, and its likelihood, $L(\hat{\theta})$. Find likelihood ratio $\Lambda=L(\hat{\theta}) / L\left(\theta_{0}\right)$. Note that $\Lambda \geq 1$.
3. Let $\lambda \equiv 2 \log \Lambda=2\left(\log L(\hat{\theta})-\log L\left(\theta_{0}\right)\right)$. For large sample sizes, under null hypothesis H_{0}, λ follows chi-square distribution with one degree of freedom.

Explanation: suppose we estimate the mean of a Normal distribution $\theta=\mu$, with known variance σ^{2}. The MLE is known to be \bar{X}. Then, from the Student's theorem,

$$
\begin{equation*}
\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \tag{1}
\end{equation*}
$$

is $\mathcal{N}(0,1)$. On the other hand,

$$
2(\log L(\bar{X})-\log L(\mu))=\frac{1}{\sigma^{2}}\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right] .
$$

After some algebra, it simplifies to $\frac{n}{\sigma^{2}}(\bar{X}-\mu)^{2}$. But this is exactly the square of (1), and is therefore $\chi^{2}(1)$.

In general, we can quote Theorem 10.22 on p. 164 from the textbook.
The proof of Theorem 10.22 depends on the ability to approximate log likelihood with an upside-down parabola, and therefore on the finite value of Fisher information $I(\theta)$. Thus, the regularity assumptions are necessary.
(d) We will reject H_{0} in favor of H_{1}, whenever $\lambda>\chi_{1-\alpha}^{2}(1)$, where $\chi_{1-\alpha}^{2}$ is the $1-\alpha$ quantile of chi-square distribution (R command qchisq(1- $\alpha, 1$)). $\left(\chi_{0.9}^{2} \approx 2.7\right.$ is shown $)$

Example: Suppose X_{1}, \ldots, X_{n} are i.i.d. from $\operatorname{Poisson}(\theta)$. Find

$$
\begin{gather*}
\Lambda=\prod_{i=1}^{n} e^{-\theta_{0}+\hat{\theta}}\left(\frac{\theta_{0}}{\hat{\theta}}\right)^{X_{i}}, \\
-2 \log \Lambda=2 n\left(\theta_{0}-\hat{\theta}\right)+2\left(\log \hat{\theta}-\log \theta_{0}\right) \sum X_{i} \tag{2}
\end{gather*}
$$

Recall that the MLE for Poisson is again \bar{X}. Thus, the expression (2) simplifies to

$$
-2 \log \Lambda=2 n\left[\left(\theta_{0}-\bar{X}\right)+\left(\log \bar{X}-\log \theta_{0}\right) \bar{X}\right] .
$$

Example data: suppose that the average number of equipment failures in the past has been known to be $\theta_{0}=2.5$ failures per week. After introducing new equipment, we observed number of failures for 10 randomly chosen weeks and obtained the sample $0,7,5,4,3,2,0,1,3,4$. Assume the Poisson model for number of failures. The sample mean is $\bar{X}=2.9$ (later we'll see that \bar{X} is a sufficient statistic for this model, that is, we only need to know \bar{X} to draw our inferences).

Set the hypotheses

$$
\begin{gathered}
H_{0}: \theta=2.5 \quad \text { "average number of failures remained the same" } \\
H_{1}: \theta \neq 2.5 \quad \text { "average number of failures has changed" }
\end{gathered}
$$

We then compute $\lambda=-2 \log \Lambda=0.608$. If we used the critical region approach, we'd reject H_{0} at the level $\alpha=0.05$ whenever $\lambda>\chi_{0.95}^{2}(1)=3.84$. Thus, we accept H_{0} (no change).
If we use the p-value approach, we can find p-value $=P\left(\chi^{2}>\lambda\right)=1-\operatorname{pchisq}(0.608,1)=$ 0.4355 .

Looking at the plot, the difference in heights between the two values is not large enough to be significant.
Question: would we have rejected $H_{0}: \theta=2.0$ based on this data?

R code:
$\mathrm{X}<-\mathrm{c}(0,7,5,4,3,2,0,1,3,4)$
lpois <- function(th)\{
$\operatorname{sum}(\log (d$ pois $(X, t h)))$
\}
$x c<-\operatorname{seq}(2,4,0.1)$
yc <- xc
nx <- length (xc)
for (i in 1:nx)\{
yc[i] <- lpois(xc[i])
\}
plot(xc,yc, type="o", main="Log likelihood for Poisson example", xlab=expression(theta), ylab $=$ expression(logL(theta)))
lines $(c(2.9,2.9), c(-30,-20), \operatorname{lty}=4)$
lines $(c(2.5,2.5), c(-30,-20)$, lty $=2)$

2 Multi-dimensional case

Suppose now that the likelihood depends on k parameters, $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)$. Let the null hypothesis be given in terms of q independent constraints:

$$
\begin{gathered}
H_{0}: g_{1}(\boldsymbol{\theta})=a_{1}, \ldots, g_{q}(\boldsymbol{\theta})=a_{q} \\
H_{1}: \text { not all } \quad g_{j}(\boldsymbol{\theta})=a_{j}
\end{gathered}
$$

As an example, consider a goodness-of-fit test (Section 10.4). Let $\theta_{1}, \ldots, \theta_{k}$ be proportions of observations in each of k categories. This will correspond to a classification table with k cells, with the constraint $\sum_{j=1}^{k} \theta_{j}=1$.
Then, the null hypothesis that all of the proportions are equal can be expressed as

$$
\begin{equation*}
H_{0}: \theta_{1}=p_{01}, \ldots \theta_{k}=p_{0 k}, \tag{3}
\end{equation*}
$$

that is, for functions $g_{j}(\boldsymbol{\theta})=\theta_{j}$. However, the additional constraint $\sum_{j=1}^{k} \theta_{j}=1$ makes one of the equations in H_{0} redundant. Thus, here $q=k-1$.

Now, consider constrained likelihood, that is, find $\boldsymbol{\theta}_{0}$ that solves

$$
\operatorname{maximize} \quad l(\boldsymbol{\theta})
$$

$$
\text { subject to } g_{1}(\boldsymbol{\theta})=a_{1}, \ldots, g_{q}(\boldsymbol{\theta})=a_{q}
$$

The procedure of testing H_{0} is then:

- Compute constrained $\boldsymbol{\theta}_{0}$ and unconstrained MLE $\hat{\boldsymbol{\theta}}$.
- Consider likelihood ratio $\Lambda=L\left(\boldsymbol{\theta}_{0}\right) / L(\hat{\boldsymbol{\theta}})$ (it's always ≤ 1).
- $\lambda=-2 \log \Lambda$ has, for large n, approximate chi-square distribution with q degrees of freedom.
- Reject H_{0} at the level α whenever $\lambda>\chi_{1-\alpha}^{2}(q)$. The p-value $=P\left(\chi^{2}>\lambda\right)=$ $1-\operatorname{pchisq}(\lambda, q)$.

