Math 483, Fall 2019. Homework 9 Due November 14.

NAME \qquad

From the book: Chapter 10, problem 14

Problem A. For a sample X_{1}, \ldots, X_{n} from the Poisson distribution with the mean $\theta=\mu$, apply the Wald test for

$$
\begin{cases}H_{0}: & \theta=30 \\ H_{1}: & \theta \neq 30\end{cases}
$$

Calculate the p-value for the data $\bar{X}=31.5, n=120$. Will you reject H_{0} at $\alpha=0.02$?
Calculate the 98% confidence interval and confirm your p-value based answer.

Problem B. For the Wald test based on proportion $(X \sim \operatorname{Binomial}(n, p))$ with test statistic $W=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}$ and

$$
\begin{cases}H_{0}: & p=0.5 \\ H_{1}: & p \neq 0.5\end{cases}
$$

calculate the power of the test for $n=500, p=0.55, \alpha=0.1$.
Plot the power function in the range $0.4 \leq p \leq 0.6$
Problem C. For four Calculus I sections, the number of people who had a failing grade at mid-semester was tabulated

Number of students	35	50	48	52
Number failing	12	10	6	8

Is there evidence that failure rates $\left(p_{i}\right)$ are not all the same for these 4 sections? [Hint: Apply the chi-square test.]

