Exam 2 Name (please print) _

Math 483, Fall 2017 November 21, 2017

Show work and correct notation for full credit. Give numerical or simple fraction answers whenever possible.

Problem	1	2	3	4	5	6	Total
Earned							
Possible	10	10	10	10	10	10	50

Solve 5 problems out of 6. Cross one out.

- 1. The success percentages in two groups are p_1 and p_2 respectively. Two groups of 80 observations each were collected. The first group had 37 successes, and second group had 24 successes.
 - (a) Find a 95% confidence interval for $p_1 p_2$, based on Normal approximation.
 - (b) Based on the above CI, do you believe that $p_1 = p_2$?
 - (c) Perform the Wald test for H_0 : $p_1 = p_2$. Also, find the p-value.
- **2.** (a) Let $\hat{\theta}$ be asymptotically Normal(mean =17.1, variance = 4.5/*n*). Use Delta method to find the approximate distribution of $\ln(\hat{\theta})$
 - (b) Give an example of an estimation problem where MLE is not asymptotically Normal.

3. MLE

Let the i.i.d. sample $X_1, ..., X_n$ come from the Poisson distribution with unknown mean $\theta > 0$.

- (a) Find the MLE for θ . Evaluate numerically based on a sample of size n = 100, and $\sum_{i=1}^{100} X_i = 815$.
- (b) Find the Fisher information
- (c) Describe the asymptotic distribution of the MLE as *n* gets large.

4. For the Exponential distribution with unknown mean $\theta = \beta$ perform the likelihood ratio test for

$$\begin{cases} H_0: \quad \theta = 10\\ H_1: \quad \theta \neq 10 \end{cases}$$

based on the data: n = 50, $\overline{X} = 14$.

5. A lottery can have 3 kinds of prizes, A, B and C. We'd like to test the hypothesis that Prize B and Prize C are equally likely, while Prize A is twice as likely as each of B and C. The empirical data on prizes gave the following counts:

Α	В	C
38	12	16

Perform the chi-square test. Give your conclusion at the level $\alpha = 0.1$.

Table C: Critical points of the chi-square distribution

	Upper tail probability						
	0.100	0.050	0.025	0.010	0.005	0.001	0.0005
Degrees of							
freedom							
1	2.706	3.841	5.024	6.635	7.879	10.828	12.116
2	4.605	5.991	7.378	9.210	10.597	13.816	15.202
3	6.251	7.815	9.348	11.345	12.838	16.266	17.730
4	7.779	9.488	11.143	13.277	14.860	18.467	19.997
5	9.236	11.070	12.833	15.086	16.750	20.515	22.105

[next page]

6. Misc.

(a) Match each of the power curves below with one of the following cases:

i. $n = 100, \alpha = 0.1$ ii. $n = 50, \alpha = 0.1$ iii. $n = 50, \alpha = 0.05$

- (b) The MLE for the mean of the exponential distribution was 2.35. Find the MLE for the median of this distribution.
- (c) True or False? Explanations are not necessary, but they won't hurt.i. Fisher information matrix contains approximate values of variances and covariances of maximum likelihood estimates.
 - ii. If $\hat{\theta}$ is an MLE for θ then $\ln(\hat{\theta})$ is the MLE for $\psi = \ln(\theta)$.