Math 382. Final Exam practice key.

1. (a) 2-sample t-test
(b) $H_{0}: \mu_{1}=\mu_{2}, \quad H_{A}: \mu_{1} \neq \mu_{2}$
(c) $s_{p}=\sqrt{\frac{10.3^{2} * 9+12.5^{2} * 9}{10+10-2}}=11.45, t=\frac{85.2-76.0}{11.45 \sqrt{1 / 10+1 / 10}}=1.797$, using $d f=18$, p-value is between $2 * 0.05$ and $2 * 0.025$, that is, between 0.1 and 0.05 .
(d) Since p-value $>\alpha=0.05$, Accept H_{0}. We did not find a significant difference between fresh and stored product potency.
2. (a) 1-sample t-test
(b) $H_{0}: \mu=16, \quad H_{A}: \mu \neq 16$
(c) $t=\frac{16.4-16}{3.6 / \sqrt{25}}=0.556$, using $d f=24$, p-value is the area under t-curve below 0.556 , clearly it is more than 0.5 .
(d) Since p -value $>\alpha$, Accept H_{0}. We did not find that the average time was different from 16 .
3. (a) matched pairs test
(b) $H_{0}: \mu_{D}=0, H_{A}: \mu_{D} \neq 0$ where μ_{D} is the average difference between garage I and garage II.
(c) Mean difference $\bar{X}=240, S=311 . t=2.31$, $d f=8$, p-value $\approx .05$, but slightly less. Reject H_{0} at level $\alpha=0.05$, but just barely.
(d) Conclusion: the garage I has, on average, different estimates. Can the t-test be safely used? Maybe not, since the distribution of differences is right-skewed (outliers at 520 and 900).
4. (a) z-test for proportion
(b) $H_{0}: p=0.1, H_{A}: p \neq 0.1$
(c) $\hat{p}=48 / 345=0.139, z=\frac{0.139-0.1}{\sqrt{0.1 * 0.9 / 345}}=2.41, \mathrm{p}$-value $=2 * P(Z>2.41)=0.016$
(d) p-value $<\alpha=0.05$, Reject H_{0}. Significant evidence that not 10% WonderWidgets are returned (likely more).
5. $t_{\alpha / 2}=1.729$, C.I. is $20.1 \pm 1.729 * 5.3 / \sqrt{20}=[18.1,22.1]$

Looking at the above interval, does it seem credible that $\mu=18.6$? - Yes, 18.6 belongs to the C.I. Accept H_{0} at the level $\alpha=1-0.90=0.10$.
6. (a) $z_{\alpha / 2}=1.645, n=(1.645 * 3.5 / 0.3)^{2} \approx 368$
(b) $z_{\alpha / 2}=1.96$, margin of error $=.05 / 2$,
$n=(1.96 / 0.025)^{2} * 0.139 *(1-0.139) \approx 736$
7. $P(X \geq 75)=P(\hat{p} \geq 75 / 400) \approx P\left(Z>\frac{.1875-0.2}{\sqrt{0.2(1-0.2) / 400}}\right) \approx P(Z>-0.63)=0.7357$
8. (a) 900
(b) 12.5
(c) $\approx P(Z>0.8)=0.2119$
9. (a) 2000
(b) 200 (you can either use the Gamma formulas, or properties of the Sums of indep. exponentials)
(c) use normal approx., 0.0668
(d) $T=2000+200(-1.645)=1671$
10. (a) yes
(b) no (success probability not constant)
(c) $\mathbb{E}(T)=11, \sigma_{3 X+Y}^{2}=3^{2} \sigma_{X}^{2}+\sigma_{Y}^{2}=16.9, \sigma_{T} \approx 4.1$.
11. (a) $K=1$
(b) $f_{X}(x)=x / 2,0<x<2, f_{Y}(y)=2(1-y), 0<y<1$
(c) $\frac{1}{2(1-y)}, 2 y<x<2$, for the numerical value sub. $y=0.8$.
(d) 0.5
(e) $8 / 9$
12. (a) $7 / 15$
(b) $14 / 15$
(c) $7 / 45$
13. (a) use $\mu=0.25 * 7=1.75 . P(N \geq 3)=1-e^{-1.75}\left(1+1.75+1.75^{2} / 2\right) \approx 0.256$
(b) if $X \sim \operatorname{Exponential}(\beta=1 / 0.25=4)$, then use $F(2)-F(1)=\left(1-e^{-2 / 4}\right)-\left(1-e^{-1 / 4}\right) \approx 0.172$
14. (a) 0.24
(b) $1 / 4$

