1. Find curl $\stackrel{\rightharpoonup}{\mathrm{F}}$ and $\operatorname{div} \overrightarrow{\mathrm{F}}$ if $\vec{F}(x, y, z)=e^{-x} \sin y \mathbf{i}+e^{-y} \sin z \mathbf{j}+e^{-z} \sin x \mathbf{k}$
2. Evaluate the line integral $\int_{C} x^{3} z d s$ where C is the curve
$\vec{r}(t)=(2 \sin t) \mathbf{i}+\mathbf{j}+(2 \cos t) \mathbf{k}$ for $\mathrm{o} \leq t \leq \pi / 2$.
3. Evaluate $\int_{S}\left(x^{2} z+y^{2} z\right) d S$ where S is part of the plane $z=4+x+y$ that lies inside the rectangle $\mathrm{o} \leq x \leq 1, \mathrm{o} \leq y \leq 1$.
4. Use Green's Theorem to evaluate $\int x^{2} y d x-x y^{2} d y$ where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.
5. Use Stokes' Theorem to evaluate $\iint_{S}(\operatorname{curl} \vec{F}) \cdot \vec{n} d S$ where
$\bar{F}(x, y, z)=\left\langle x^{2} y z, y z^{2}, z^{3} e^{x y}\right\rangle, S$ is part of the sphere $x^{2}+y^{2}+z^{2}=5$ that lies above the plane $z=1$ and S is oriented upward.
6. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ where
$\vec{F}=\left(4 x^{3} y^{2}-2 x y^{3}\right) \mathbf{i}+\left(2 x^{4} y-3 x^{2} y^{2}+4 y^{3}\right) \mathbf{j}$ and C :
$\vec{r}(t)=(t+\sin \pi t) \mathbf{i}+(2 t+\cos \pi t) \mathbf{j}, \mathrm{o} \leq t \leq 1$.
7. Evaluate the line integral $\int_{C}(x y+\ln x) d y$ where C is the arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$.
8. Use Green's Theorem to evaluate the line integral $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$ along the positively oriented curve C where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
9. Show that the vector field $\vec{F}(x, y, z)=\left(2 x z+y^{2}\right) \mathbf{i}+2 x y \mathbf{j}+\left(x^{2}+3 z^{2}\right) \mathbf{k}$ is conservative and evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\mathrm{C}: x=t^{2}, y=t+1, z=2 t-1$ for $0 \leq t \leq 1$.
10. Evaluate the surface integral $\int_{S}\left(x^{2}+y^{2}\right) d S$ where S is the surface $z=x y$ inside $x^{2}+y^{2}=4$ for $x \geq 0, y \geq 0$.
11. Evaluate $\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S$ where $\vec{F}(x, y, z)=x \mathbf{i}+y^{2} \mathbf{j}+x y z \mathbf{k}$ and S is part of the paraboloid $z=4-x^{2}-y^{2}$ with $z \geq 0$. Use the upward unit normal vector.
12. Find the surface area of the cap cut from the paraboloid $y^{2}+z^{2}=3 x$ by the plane $x=1$.

For additional problems, check out the review problems for Chapter 14. Note the questions above are simply a sample of questions possible for the exam; it is possible that other types of questions may appear on your exam.

