1. Describe/sketch the region whose area is given by the integral $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \sin \theta} r d r d \theta$.
2. Write $\iint_{R} f(x, y) d A$ as an iterated integral where R is the region shown below and f is an arbitrary continuous function on R.

3. Rewrite the integral $\int_{-1}^{1} \int_{x^{2}}^{1-y} \int_{0}^{1-y} f(x, y, z) d z d y d x$ as an iterated integral in order $d x d y d z$.
4. Find the mass of the plane lamina bounded by $x=2 y^{2}$ and $y^{2}=x-4$ with density $\rho(x, y)=y^{2}$.
5. Set up the iterated triple integral, complete with correct limits, for the volume of the solid bounded by $y=4-x^{2}-z^{2}, x=0, y=0, z=0$, and $x+z=2$. Do not evaluate the integral.
6. For the following double integral, sketch the region, reverse the order of integration, then evaluate.

$$
\int_{0}^{3} \int_{x^{2}}^{9} x \cos \left(y^{2}\right) d y d x
$$

7. Set up the iterated triple integral, with correct limits, to find the volume of the ice cream cone bounded above by the sphere $\rho=a$ and below by the cone $\phi=\frac{\pi}{3}$.
8. Find the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$.
9. Express the triple integral $\iiint_{T} f(x, y, z) d V$ where T is the solid bounded by the surfaces $x^{2}+z^{2}=4, y=0, y=6$.
a. Set up the integral first integrating with respect to x, second with respect to z and then with respect to y.
b. Set up the integral first integrating with respect to y, second with respect to z and then with respect to x.
10. Describe a solid whose volume is equal to $\int_{0}^{2 \pi} \int_{0}^{3} \int_{-\sqrt{9-r^{2}}}^{0} r d z d r d \theta$.
11. Convert to spherical coordinates and evaluate.

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} e^{-\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d z d y d x
$$

12. Set up the integral to find the area of the first quadrant region bounded by the lines $y=x, y=2 x$ and the hyperbolas $x y=1, x y=2$, using the substitute $u=x y, v=\frac{y}{x}$.
