1. Find the equation of the plane passing through the points $(1,2,1),(-1,3,2)$, and $(0,-1,5)$.
2. Determine whether the planes $3 x+2 y-3 z=10$ and $-6 x-10 y+z=10$ are parallel, orthogonal or neither. If neither, what is the angle between the two planes?
3. Find an equation of the line of intersection of the planes $Q: 2 x-y+3 z-1=0$ and $R:-x+3 y+z-4=0$
4. Consider the cylinder $x=z^{2}-4$ in \mathbb{R}^{3}. Identify the coordinate axis to which the cylinder is parallel. Sketch the cylinder.
5. Identify and briefly describe the surface $x^{2}+y^{2}+z^{2}+2 x-4 y-16=0$.
6. Identify and briefly describe the surface $y=4 x^{2}+z^{2}$.
7. Find $\frac{\partial z}{\partial x}$ for $x e^{y z}+y e^{x z}+z e^{x y}=5$, assuming that $z=f(x, y)$
8. Find the linear approximation to the function, $f(x, y)=\sqrt{x^{2}+y^{2}}$ at the point $P(3,-4)$. Use it to estimate $f(3.06,-3.92)$.
9. Sketch the domain of the function $f(x, y)=\sqrt{y-x} \ln (y+x)$ in the $x y$-plane.
10. Given the function $f(x, y, z)=e^{x y^{2} z^{3}}$
a. Find $\frac{\partial f}{\partial x}$
b. Find $\frac{\partial^{2} f}{\partial x^{2}}$
c. Find $\frac{\partial^{2} f}{\partial x \partial y}$
d. Find $\frac{\partial^{3} f}{\partial z \partial y \partial x}$
11. Find the directional derivative to the surface given by the function $f(x, y)-7+10 x \sqrt{y}$ at the point $P(5,16)$ in the direction of the vector $\vec{v}=\langle-4,3\rangle$.
12. Find an equation of the plane tangent to the surface given by the function $f(x, y)=$ $x^{3}-x^{2} y$ at the point $P(2,1)$.
13. For $f(x, y)=x^{2}-y^{2}$, find a line in the x direction tangent to the surface defined by f at $(1,2)$.
14. Suppose that the temperature w (in degrees Celsius) at the point (x, y) is given by $w=$ $f(x, y)=5+0.002 x^{2}+0.003 y^{2}$. In what direction should the grasshopper hop from the point $(10,20)$ to get warmer as quickly as possible? What is the rate of change of the temperature in this direction?
15. Find the directional derivative to the function $f(x, y, z)=2 z \sqrt{x y}$ at the point $(2,2,3)$ in the direction of the vector $\mathbf{v}=\langle 1,1,1\rangle$.
16. Use the method of Lagrange mulitipliers to find the dimensions of a rectangular box (with a lid) with largest volume, if the total surface area is $96 \mathrm{~cm}^{2}$.
17. Find $\frac{\partial z}{\partial t}$ for $z=\sin \left(x^{2} y\right), x=\frac{s}{t}$, and $y=t^{2} e^{s t}$.
18. Find the limit or state that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} e^{\sin (x+y-\pi / 2)}
$$

19. Show the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{3 x^{2}+y^{2}}
$$

20. Find ∇f for $f(x, y, z)=x y+x z+y z+4$.
21. Find the direction in which the function $f(x, y, z)=x e^{z}-y e^{x}$ decreases most rapidly from the point $P(0,2,0)$.
22. For the function $f(x, y)=x^{2}-y$, make a sketch of several level curves. Label at least two level curves with their z-values.
23. A rectangular box has a square base. Find the rate at which its volume is changing if its base edge is increasing at $2 \mathrm{~cm} / \mathrm{min}$ and its height is decreasing at $3 \mathrm{~cm} / \mathrm{min}$ at the instant when each dimension is 1 meter.
24. Use the method of Lagrange Multipliers to find the minimum value of the function $f(x, y)=x^{2}+y+2 z$ subject to the constrain $x^{2}+2 y^{2}+z^{2}=1$.
25. Locate and classify the critical points of the function $f(x, y)=3 x y-x^{2} y-x y^{2}$.
26. According to postal regulations, the largest cylindrical container that can be sent has girth $2 \pi r$ plus length l of 108 inches. What is the largest cylindrical container that can be mailed?

For additional problems, check out the review problems for Chapter 12. Note the questions above are simply a sample of possible questions possible for the exam; it is possible that other types of questions may appear on your exam.

