1. Given the position function of an object $\vec{r}(t)=t^{3} \mathbf{i}+6 t^{2} \mathbf{j}+\sin t \mathbf{k}$ with $\mathrm{O} \leq t \leq \pi$ find the velocity and acceleration vectors.
2. Let $\vec{u}=\langle 3,-2,-1\rangle$ and $\vec{v}=\langle 5,-3,-5\rangle$
a. Find a unit vector in the direction of \vec{u}
b. Find $\vec{u} \cdot \vec{v}$.
c. Find $\vec{u} \times \vec{v}$.
d. Find the projection of \vec{v} onto \vec{u}.
e. Find the angle between \vec{u} and \vec{v}.
f. Find a vector parallel to \vec{v} with length 5 units.
g. Compute the lengths of the diagonals of the parallelogram determined by \vec{u} and \vec{v}.
h. Find a vector orthogonal to both \vec{u} and \vec{v}.
i. Compute the area of the parallelogram determined by \vec{u} and \vec{v}.
3. Find a vector equation of the line that passes through the points $(2,6,-1)$ and $(-6,4,0)$.
4. Find the parametric equations of the line that passes through the point $(0,1,1)$ and parallel to the vector $\langle 2,-1,3\rangle$.
5. Find a vector equation of the line that passes through $(2,1,0)$ and perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$.
6. Find the equation of the plane through $A(-1,6,-5)$ and parallel to the plane $x+y+z+2=0$.
7. Find an equation of the plane through $P(-2,3,1), Q(1,1,0)$, and $R(-1,0,1)$.
8. Find the equation of the sphere with center $(2,-3,4)$ and tangent to the $x z$-plane.
9. Find the equation of the sphere with the line segment $(1,5,-2)$ and $(3,9,-1)$ is the diameter.
10. Find the distance between the points $P(1,2,-3)$ and $Q(4,7,-3)$.
11. Find an equation of the line of intersection of the two plane $y-5 z=3$ and $6 x-7 y=5$.
12. Find an equation of the line tangent to the curve $\vec{r}(t)=\langle\sin 2 t, \cos 2 t, t\rangle$ at $t=\frac{\pi}{4}$
13. Determine the distance from the point $P(-6,3,0)$ to the line given by $\vec{r}(t)=\langle 3+4 t,-2+6 t, t\rangle$.
14. Show that the lines with equation

$$
\begin{gathered}
\vec{r}(t)=\langle 2 t-1,3-4 t, 2+5 t\rangle \\
\vec{R}(s)=\langle 4+3 s, 2 s-1,3 s\rangle
\end{gathered}
$$

are skew, find the equations of the parallel planes containing the lines, and find the distance between the lines.
14. Let $\mathbf{r}(t)=\left\langle\sqrt{2-t},\left(e^{t}-1\right) / t, \ln (t+1)\right\rangle$.
a. Find the domain of \mathbf{r}.
b. Find $\lim _{t \rightarrow 0} \vec{r}(t)$
15. Given the points $\mathrm{A}(1,0,1), \mathrm{B}(2,3,0)$ and $\mathrm{C}(-1,1,4)$, find the area of the triangle with vertices A, B, and C .
16. Find the length of the curve $\overrightarrow{\mathrm{r}}(t)=\left\langle 2 t^{3 / 2}, \cos 2 t, \sin 2 t\right\rangle$ for $\mathrm{O} \leq t \leq 1$.
17. Find the distance from the point $(2,0,-3)$ to the plane $3 x-4 y+5 z=1$.
18. A particle moves in space with parametric equations $x=t, y=t^{2}, z=\frac{4}{3} t^{3 / 2}$. Find the curvature of its trajectory, the unit tangent vector, and the unit normal vector when $t=1$.
19. Find the binormal vector for $x=t, y=t^{2}, z=\frac{4}{3} t^{3 / 2}$ at $t=1$.
20. Find the distance from the point $(-6,3,0)$ to the line given by $\vec{r}(t)=\langle 1+5 t,-6+t,-4 t\rangle$
21. A particle starts at the origin with initial velocity $\mathbf{i}-\mathbf{j}+3 \mathbf{k}$. Its acceleration is $\mathbf{a}(t)=6 t \mathbf{i}+12 t^{2} \mathbf{j}-6 t \mathbf{k}$. Find its position function.
22. Find the tangential and normal components of acceleration for a particle moving along a conical helix defined by $\vec{r}(t)=\langle t \cos t, t \sin t, t\rangle$.
23. The helix $\mathbf{r}_{1}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ intersects the curve $\mathbf{r}_{2}(t)=(1+t) \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ at point ($1,0,0$). Find the angle of intersection of these curves.

For additional problems, check out the review problems for Chapters 11. Note the questions above are simply a sample of questions possible for the exam; it is possible that other types of questions may appear on your exam.

