Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\overrightarrow{\boldsymbol{u}} \cdot \vec{v}=|\vec{u}||\vec{v}|$ cos and $|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}|$ sin
- $x=\rho \sin . \cos , y=\rho \sin \sin , z=\rho \cos$, and $d V=\rho^{2} \sin d \rho d \varphi d \theta$
- Green's Theorem Let C be a closed bounded curve that bounds a region R in the plane and let $\mathbf{F}(x, y))=f \mathbf{i}+g \mathbf{j}$ be a vector field then

1. Circulation: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} f d x+g d y=\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A$.
2. Outward Flux Integral: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\oint_{C} f d y-g d x=\iint_{R}\left(\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}\right) d A$

- Stokes' Theorem Let S be an oriented surface in \mathbb{R}^{3} with a piecewise-smooth closed boundary C whose orientation is consistent with that of S. Assume that $\mathbf{F}=\langle f, g, h\rangle$ is a vector field whose components have continuous first partial derivatives on S. Then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
$$

when \mathbf{n} is the unit vector normal to S determined by the orientation of S.

Question	Points	Score
1	8	
2	10	
3	10	
4	10	
5	10	
6	10	
7	12	
8	10	
9	10	
10	10	
Total:	100	

1. (8 points) Complete test corrections.
2. (10 points) Evaluate the line integral $\int_{C}(y-z) d s$ where C is the helix $\mathbf{r}(t)=$ $\langle 3 \cos t, 3 \sin t, t\rangle$ for $0 \leq t \leq 2 \pi$.
3. (10 points) Compute the divergence and curl of the vector field $\mathbf{F}=\left\langle 2 x y+z^{4}, x^{2}, 4 x z^{3}\right\rangle$. State whether the field is source free or irrotational.
4. (10 points) Use a surface integral to find the area of the surface of a frustum of the cone $z^{2}=x^{2}+y^{2}$ for $2 \leq z \leq 4$ (excluding the bases).
5. (10 points) Evaluate the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ using Stokes' Theorem where $\mathbf{F}=$ $\left\langle x^{2}-y^{2}, x, 2 y z\right\rangle ; C$ is the boundary of the plane $z=6-x-y$ in the first octant. Assume that C has counterclockwise orientation. Set up but do not evaluate.
6. (10 points) Evaluate $\oint_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y$, where C is the circle $x^{2}+y^{2}=9$.
7. Given $\mathbf{F}=\left\langle y^{2} z+2 x z^{2}, 2 x y z, x y^{2}+2 x^{2} z\right\rangle$ and C is $\mathbf{r}(t)\left\langle\sqrt{t}, t+1, t^{2}\right\rangle$ for $0 \leq t \leq 1$.
a. (6 points) Find a function φ such that $\mathbf{F}=\nabla \varphi$
b. (6 points) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
8. (10 points) Use Stokes' Theorem to evaluate the surface integral $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$ where $\mathbf{F}=\left\langle x^{2}-y^{2}, y^{2}, x z\right\rangle ; S$ is the hemisphere $x^{2}+y^{2}+z^{2}=4$ for $y \geq 0$. The normal vector is outward, points to positive y-axis.
9. (10 points) Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ for $\mathbf{F}=\left\langle x, y, z^{2}\right\rangle ; S$ is the sphere with radius 1 and center at the origin. Set up, but do not evaluate.
10. (10 points) Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ for $\mathbf{F}=\left\langle x y^{2},-x^{2}\right\rangle ; C$ is $\mathbf{r}(t)=$ $\left\langle t^{3}, t^{2}\right\rangle$ for $0 \leq t \leq 1$.
