Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta$ and $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta$
- $x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi$, and $d V=\rho^{2} \sin \varphi d \rho d \varphi d \theta$
- Green's Theorem Let C be a closed bounded curve that bounds a region R in the plane and let $\mathbf{F}(x, y))=f \mathbf{i}+g \mathbf{j}$ be a vector field then

1. Circulation: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} f d x+g d y=\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A$.
2. Outward Flux Integral: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\oint_{C} f d y-g d x=\iint_{R}\left(\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}\right) d A$

- Stokes' Theorem Let S be an oriented surface in \mathbb{R}^{3} with a piecewise-smooth closed boundary C whose orientation is consistent with that of S. Assume that $\mathbf{F}=\langle f, g, h\rangle$ is a vector field whose components have continuous first partial derivatives on S. Then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
$$

when \mathbf{n} is the unit vector normal to S determined by the orientation of S.

Question	Points	Score
1	8	
2	10	
3	10	
4	10	
5	10	
6	10	
7	12	
8	10	
9	10	
10	10	
Total:	100	

1. (8 points) Complete test corrections.
2. (10 points) Evaluate the line integral $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$ where C is the helix $\mathbf{r}(t)=\langle t, \cos (2 t), \sin (2 t)\rangle$ for $0 \leq t \leq 2 \pi$.

Solution:

Given $\mathbf{r}(t)=\langle t, \cos (2 t), \sin (2 t)\rangle$ then
$d s=\left|\mathbf{r}^{\prime}\right| d t=|\langle 1,-2 \sin (2 t), 2 \cos (2 t)\rangle| d t=\sqrt{1+4 \sin ^{2}(2 t)+4 \cos ^{2}(2 t)} d t=\sqrt{5} d t$

$$
\begin{aligned}
\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s & =\int_{0}^{2 \pi}\left(t^{2}+\cos ^{2}(2 t)+\sin ^{2}(2 t)\right) \sqrt{5} d t \\
& =\sqrt{5} \int_{0}^{2 \pi}\left(t^{2}+1\right) d t \\
& =\sqrt{5}\left(\left.\frac{t^{3}}{3}\right|_{0} ^{2 \pi}+\left.t\right|_{0} ^{2 \pi}\right)=\sqrt{5}\left(\frac{8 \pi^{3}}{3}+2 \pi\right)
\end{aligned}
$$

3. (10 points) Compute the divergence and curl of the vector field $\mathbf{F}=\left\langle x y^{2} z^{2}, x^{2} y z^{2}, x^{2} y^{2} z\right\rangle$. State whether the field is source free or irrotational.

Solution:

The divergence is $\nabla \cdot \mathbf{F}=\frac{\partial\left(x y^{2} z^{2}\right)}{\partial x}+\frac{\partial\left(x^{2} y z^{2}\right)}{\partial y}+\frac{\partial\left(x^{2} y^{2} z\right)}{\partial z}=y^{2} z^{2}+x^{2} z^{2}+x^{2} y^{2}$.
The curl is $\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x y^{2} z^{2} & x^{2} y z^{2} & x^{2} y^{2} z\end{array}\right|=\langle 0,0,0\rangle$
The field is not source free $\nabla \cdot \mathbf{F} \neq 0$; however, it is irrotational becauase $\nabla \times \mathbf{F}=\mathbf{0}$.
4. (10 points) Evaluate the surface integral $\iint_{S}(x+y+z) d S$ where S is the parallelogram with parametric equations $x=u+v, y=u-v, z=1+2 u+v$ for $0 \leq u \leq 2,0 \leq v \leq 1$. Set up, but do not evaluate.

Solution:

$\mathbf{r}(u, v)=\langle u+v, u-v, 1+2 u+v\rangle$
First $d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$
So $\mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ 1 & -1 & 1\end{array}\right|=\langle 1+2,-(1-2),-1-1\rangle=\langle 3,1,-2\rangle$
Thus $d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A=\sqrt{9+1+4} d A=\sqrt{14} d A$

$$
\begin{aligned}
\iint_{S}(x+y+z) d S & =\int_{0}^{1} \int_{0}^{2} \sqrt{14}(u+v+u-v+1+2 u+v) d u d v \\
& =\sqrt{14} \int_{0}^{1} \int_{0}^{2}(4 u+v+1) d u d v
\end{aligned}
$$

5. (10 points) Evaluate the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ using Stokes' Theorem where $\mathbf{F}=$ $\langle 1, x+y z, x y-\sqrt{z}\rangle ; C$ is the boundary of the plane $x+y+z=1$ in the first octant. Assume that C has counterclockwise orientation. Set up but do not evaluate.

Solution:

Evaluate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$
First the curl is $\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1 & x+y z & x y-\sqrt{z}\end{array}\right|=\langle x-y,-y, 1\rangle$
Second $\mathbf{n} d S=\frac{\mathbf{r}_{x} \times \mathbf{r}_{y}}{\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|}\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| d A=\mathbf{r}_{x} \times \mathbf{r}_{y} d A$
$\mathbf{r}(x, y)=\langle x, y, 1-x-y\rangle$ for $0 \leq x \leq 1,0 \leq y \leq 1-x$
So $\mathbf{r}_{x} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right|=\langle 0+1,-(-1-0), 1-0\rangle=\langle 1,1,1\rangle$

Thus $(\nabla \times \mathbf{F}) \cdot \mathbf{r}_{x} \times \mathbf{r}_{y} d A=(x-y-y+1) d A=(x-2 y+1) d A$

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\int_{0}^{1} \int_{0}^{1-x}(x-2 y+1) d y d x
$$

6. (10 points) Evaluate $\oint_{C}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y$, where C boundary of the triangle with vertices $(0,0),(2,1)$ and $(0,1)$.

Solution:

Use Green's Theorem (Circulation)
$\mathbf{F}=\langle f, g\rangle=\left\langle x^{2}+y^{2}, x^{2}-y^{2}\right\rangle$

$$
\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}=2 x-2 y
$$

The lines of the triangle are $x=0, y=1, y=x / 2$

$$
\begin{aligned}
\oint_{C}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y & =\iint\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A \\
& =\int_{0}^{2} \int_{x / 2}^{1}(2 x-2 y) d y d x \\
& =\left.\int_{0}^{2}\left(2 x y-y^{2}\right)\right|_{x / 2} ^{1} d x=\int_{0}^{2}\left(2 x-1-x^{2}+\frac{x^{2}}{2}\right) d x \\
& =\left.\left(x^{2}-x-\frac{x^{3}}{3}\right)\right|_{0} ^{2}=4-2-\frac{8}{3}=-\frac{2}{3}
\end{aligned}
$$

7. Given $\mathbf{F}=\left\langle 2 x y^{3} z^{2}+2 y^{2}, 3 x^{2} y^{2} z^{2}+4 x y+z, 2 x^{2} y^{3} z+y\right\rangle$ and C is $\mathbf{r}(t)=\left\langle 1-2 t, t+1, t^{2}\right\rangle$ for $0 \leq t \leq 1$.
a. (6 points) Find a function φ such that $\mathbf{F}=\nabla \varphi$

Solution:

$\mathbf{F}=\nabla \varphi=\left\langle\varphi_{x}, \varphi_{y}, \varphi_{z}\right\rangle$
To find $\varphi(x, y, z)$ start by integrating each partial derivative of $\nabla \varphi$ with respect to the variable list.

$$
\begin{aligned}
& \int \varphi_{x} d x=\int\left(2 x y^{3} z^{2}+2 y^{2}\right) d x=x^{2} y^{3} z^{2}+2 x y^{2} \\
& \int \varphi_{y} d y=\int\left(3 x^{2} y^{2} z^{2}+4 x y+z\right) d y=x^{2} y^{3} z^{2}+2 x y^{2}+y z
\end{aligned}
$$

$\int \varphi_{z} d z=\int\left(2 x^{2} y^{3} z+y\right) d z=x^{2} y^{3} z^{2}+y z$
Combining the three antiderivative we get

$$
\varphi(x, y, z)=x^{2} y^{3} z^{2}+2 x y^{2}+y z+C
$$

(Each element in the three anitderivatives is added only once.)
b. (6 points) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

Solution:

Since \mathbf{F} is conservative, it is path independent

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\varphi(B)-\varphi(A)
$$

where B is the point associated with $\mathbf{r}(1)=\left\langle 1-2,1+1,1^{2}\right\rangle=\langle-1,2,1\rangle$ so B is the point $(-1,2,1)$ and A is the point associated with $\mathbf{r}(0)=\langle 1,1,0\rangle$ so A is the point $(1,1,0)$.
Thus

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\varphi(-1,2,1)-\varphi(1,1,0)=8-8+2-0-2-0=0
$$

8. (10 points) Use Stokes' Theorem to evaluate the surface integral $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$ where $\mathbf{F}=\left\langle x^{2} \sin z, y^{2}, x y\right\rangle ; S$ the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane, oriented upward. Set up, but do not evaluate.

Solution:

Evaluate $\oint \mathbf{F} \cdot d \mathbf{r}$
Note: when $z=0$ we get $0=1-x^{2}-y^{2} \Longleftrightarrow 1=x^{2}+y^{2} \Longrightarrow r=1$ so C is a circle of radius 1 centered at the origin. So C is $\mathbf{r}(\theta)=\langle\cos \theta, \sin \theta, 0\rangle$ for $0 \leq \theta \leq 2 \pi$. This circle is traversed counterclockwise, assuming the the normal vector for the surface was upward.

Now $d \mathbf{r}=\langle-\sin \theta, \cos \theta, 0\rangle$ and
$\mathbf{F}=\left\langle x^{2} \sin z, y^{2}, x y\right\rangle=\left\langle 0, \sin ^{2} \theta, \cos \theta \sin \theta\right\rangle$
$\oint \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \sin ^{2} \theta \cos \theta d \theta=\left.\frac{1}{3} \sin ^{3} \theta\right|_{0} ^{2 \pi}=0$
9. (10 points) Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ for $\mathbf{F}=\left\langle-x,-y, z^{3}\right\rangle ; S$ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=3$. Set up, but do not evaluate.

Solution:

First $\mathbf{n} d S=\frac{\mathbf{r}_{r} \times \mathbf{r}_{\theta}}{\left|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right|}\left|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right| d A=\mathbf{r}_{r} \times \mathbf{r}_{\theta} d A$
$\mathbf{r}(r, \theta)=\langle r \cos \theta, r \sin \theta, r\rangle$ for $1 \leq r \leq 3,0 \leq \theta \leq 2 \pi$
So $\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & 1 \\ -r \sin \theta & r \cos \theta & 0\end{array}\right|=\langle-r \cos \theta,-r \sin \theta, r\rangle$
Second, $\mathbf{F}=\left\langle-x,-y, z^{3}\right\rangle=\left\langle-r \cos \theta,-r \sin \theta, r^{3}\right\rangle$
Thus $\mathbf{F} \cdot \mathbf{r}_{r} \times \mathbf{r}_{\theta} d A=\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta+r^{4}\right) d A=\left(r^{2}+r^{4}\right) d A$
$\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\int_{0}^{2 \pi} \int_{1}^{3}\left(r^{2}+r^{4}\right) d r d \theta$
10. (10 points) Find the work done by $\mathbf{F}=\langle x y, y,-y z\rangle$ over the curve $C: \mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle$ as t increases from $t=0$ to $t=1$.

Solution:

Work is $\int \mathbf{F} \cdot d \mathbf{r}$
Now $\mathbf{F}=\langle x y, y,-y z\rangle=\left\langle t\left(t^{2}\right), t^{2},-t^{2}(t)\right\rangle=\left\langle t^{3}, t^{2},-t^{3}\right\rangle$
and $d \mathbf{r}=\langle 1,2 t, 1\rangle d t$.
$\mathbf{F} \cdot d \mathbf{r}=\left(t^{3}+2 t^{3}-t^{3}\right) d t=2 t^{3} d t$.
Thus $\int \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1} 2 t^{3} d t=\left.\frac{1}{2} t^{4}\right|_{0} ^{1}=\frac{1}{2}$.

