Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln(2)$, unless they simplify further like $\sqrt{9} = 3$ or $\cos(3\pi/4) = -\sqrt{2}/2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\vec{u} \cdot \vec{v} = ||\vec{u}||||\vec{v}||\cos\theta$ and $||\vec{u} \times \vec{v}|| = ||\vec{u}||||\vec{v}||\sin\theta$
- $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$, and $dV = \rho^2 \sin \varphi d\rho d\varphi d\theta$
- 1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:	
Print Name:	
Date:	

Tal	ble	12.1	

Name	Standard Equation	Features	Graph
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	All traces are ellipses.	
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z=z_0>0$ are ellipses. Traces with $x=x_0$ or $y=y_0$ are parabolas.	Z y
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ are ellipses for all z_0 . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.	y y
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z=z_0$ with $ z_0 > c $ are ellipses. Traces with $x=x_0$ and $y=y_0$ are hyperbolas.	x y
Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z=z_0\neq 0$ are ellipses. Traces with $x=x_0$ or $y=y_0$ are hyperbolas or intersecting lines.	y
Hyperbolic paraboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.	Z Z

Question	Points	Score
1	8	
2	10	
3	10	
4	10	
5	14	
6	10	
7	10	
8	14	
9	14	
Total:	100	

3. (10 points) For $\int_0^3 \int_0^{9-x^2} \int_0^x f(x,y,z) \, dy \, dz \, dx$, sketch the region D and re-write as an iterated integral in the order $dz \, dx \, dy$

4. (10 points) Rewrite the integral $\int_{-2}^2 \int_0^{\sqrt{4-x^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx$ in spherical coordinates. Do no evaluate.

5. (14 points) Find the average value of $z = \sqrt{16 - x^2 - y^2}$ over the disk in the xy-plane centered at the origin with radius 4.

6. (10 points) Convert $\int_0^{2\pi} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} 3r \, dz dr d\theta$ to rectangular coordinates with order of integration dz dx dy. Do not evaluate.

7. (10 points) Find the volume of the solid that is enclosed by the planes x=2, $y=0,\ z=0,\ y=x$ and the parabolic cylinders $z=x^2$. Set up the triple integral but do not evaluate.

8. (14 points) Use cylindrical coordinates to find the volume of the solid bounded by the plane $z=\sqrt{29}$ and the hyperboloid $z=\sqrt{4+x^2+y^2}$.

9. (14 points) Use a transformation and evaluate $\iint_R e^{xy} dA$ where R is the region bounded by the hyperbolas xy=1 and xy=4, and the lines y/x=1 and y/x=3 in the first quadrant.