Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$ and $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$
- $x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi$, and $d V=\rho^{2} \sin \varphi d \rho d \varphi d \theta$

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature: \qquad
Print Name:
Date: \qquad

Table 12.1
Name Standard Equation
Features
Ellipsoid $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad$ All traces are ellipses.
$\begin{aligned} & \text { Elliptic } \\ & \text { paraboloid }\end{aligned} \quad z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
Traces with $z=z_{0}>0$ are ellipses. Traces with paraboloid $x=x_{0}$ or $y=y_{0}$ are parabolas.

$\begin{aligned} & \text { Hyperboloid } \\ & \text { of one sheet }\end{aligned} \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
Traces with $z=z_{0}$ are ellipses for all z_{0}. Traces with $x=x_{0}$ or $y=y_{0}$ are hyperbolas.

Hyperboloid $\quad-\frac{x^{2}}{2}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad$ Traces with $z=z_{0}$ with $\left|z_{0}\right|>|c|$ are ellipses. Traces of two sheets

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{-}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$ with $x=x_{0}$ and $y=y_{0}$ are hyperbolas.

Traces with $z=z_{0} \neq 0$ are ellipses. Traces with $x=x_{0}$ or $y=y_{0}$ are hyperbolas or intersecting lines.

Hyperbolic paraboloid
$z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$
Traces with $z=z_{0} \neq 0$ are hyperbolas. Traces with $x=x_{0}$ or $y=y_{0}$ are parabolas.

Question	Points	Score
1	8	
2	10	
3	10	
4	10	
5	14	
6	10	
7	10	
8	14	
9	14	
Total:	100	

2. (10 points) For $\int_{0}^{2} \int_{1-y}^{1} f(x, y) d x d y$, sketch the region R and re-write as a double integral with the order of integration reversed.
3. (10 points) For $\int_{0}^{3} \int_{0}^{9-x^{2}} \int_{0}^{x} f(x, y, z) d y d z d x$, sketch the region D and re-write as an iterated integral in the order $d z d x d y$
4. (10 points) Rewrite the integral $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x$ in spherical coordinates. Do no evaluate.
5. (14 points) Find the average value of $z=\sqrt{16-x^{2}-y^{2}}$ over the disk in the $x y$ plane centered at the origin with radius 4 .
6. (10 points) Convert $\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} 3 r d z d r d \theta$ to rectangular coordinates with order of integration $d z d x d y$. Do not evaluate.
7. (10 points) Find the volume of the solid that is enclosed by the planes $x=2$, $y=0, z=0, y=x$ and the parabolic cylinders $z=x^{2}$. Set up the triple integral but do not evaluate.
8. (14 points) Use cylindrical coordinates to find the volume of the solid bounded by the plane $z=\sqrt{29}$ and the hyperboloid $z=\sqrt{4+x^{2}+y^{2}}$.
9. (14 points) Use a transformation and evaluate $\iint_{R} e^{x y} d A$ where R is the region bounded by the hyperbolas $x y=1$ and $x y=4$, and the lines $y / x=1$ and $y / x=3$ in the first quadrant.
