1. Find the equation of the plane passing through the points $(1,2,1),(-1,3,2)$, and $(0,-1,5)$.

Solution:

Label the points $P(1,2,1), Q(-1,3,2)$, and $R(0,-1,5)$. To determine a plane, we need a vector normal to the plane. The vector $\mathbf{n}=\overline{P Q} \times \overline{P R}$ will be orthogonal to the plane containing P, Q, and R.
$\overline{P Q}=\langle-2,1,1\rangle$ and $\overline{P R}=\langle-1,-3,4\rangle$
$\mathbf{n}=\overline{P Q} \times \overline{P R}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 1 & 1 \\ -1 & -3 & 4\end{array}\right|=\langle 7,7,7\rangle$
The plane is $7(x-1)+7(y-2)+7(z-1)=0$ or $7 x+7 y+7 z=28$ or $x+y+z=4$.
2. Determine whether the planes $3 x+2 y-3 z=10$ and $-6 x-10 y+z=10$ are parallel, orthogonal or neither. If neither, what is the angle between the two planes?

Solution:

The normal vector for the first plane is $\mathbf{n}_{1}=\langle 3,2,-3\rangle$ and for the second plane is $\mathbf{n}_{2}=\langle-6,-10,1\rangle$, respectively.

Since the normal vectors are not parallel, $\mathbf{n}_{2} \neq c \mathbf{n}_{2}$ for any real number c, thus the planes are NOT parallel.

The planes are not orthogonal since the normal vectors are not orthogonal, $\mathbf{n}_{1} \times \mathbf{n}_{2}=$ $-41 \neq 0$.

The angle between the planes is $\theta=\cos ^{-1}\left(\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}\right) \cos ^{-1}=\left(\frac{-41}{\sqrt{22} \sqrt{137}}\right)$
Note $\mathbf{n}_{1} \cdot \mathbf{n}_{2}=3(-6)+2(-10)-3(1)=-41,\left|\mathbf{n}_{1}\right|=\sqrt{9+4+9}=\sqrt{22}$ and $\mathbf{n}_{2} \mid=\sqrt{36+100+1}=\sqrt{137}$.
3. Find an equation of the line of intersection of the planes $Q: 2 x-y+3 z-1=0$ and $R:-x+3 y+z-4=0$

Solution:

The direction vector for the line \mathbf{v} is the vector that is orthogonal to the normal vectors $\mathbf{n}_{Q}=\langle 2,-1,3\rangle$ and $\mathbf{n}_{R}=\langle-1,3,1\rangle$.
$\mathbf{v}=\mathbf{n}_{Q} \times \mathbf{n}_{R}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 3 \\ -1 & 3 & 1\end{array}\right|=\langle-10,-5,5\rangle$
Find a point on the line: Let $x=0$ then $-y+3 z=1$ and $3 y+z=4$. From the first one, $y=3 z-1$, plugging this into the second $3(3 z-1)+z=4 \Longleftrightarrow 10 z=7 \Longleftrightarrow z=\frac{7}{10}$ and $y=3 \frac{7}{10}-1=\frac{11}{10}$, thus a point on the line is $\left(0, \frac{11}{10}, \frac{7}{10}\right)$.

The equation of the line of intersection

$$
\mathbf{r}(t)=\left\langle 0, \frac{11}{10}, \frac{7}{10}\right\rangle+t\langle-10,-5,5\rangle \quad t \in \mathbb{R}
$$

OR $\mathbf{r}(t)=\left\langle-10 t, \frac{11}{10}-5 t, \frac{7}{10}+5 t\right\rangle$ for $t \in \mathbb{R}$.
OR $x=-10 t, y=\frac{11}{10}-5 t, z=\frac{7}{10}+5 t$ for $t \in \mathbb{R}$.
4. Consider the cylinder $x=z^{2}-4$ in \mathbb{R}^{3}. Identify the coordinate axis to which the cylinder is parallel. Sketch the cylinder.

Solution:

5. Identify and briefly describe the surface $x^{2}+y^{2}+z^{2}+2 x-4 y-16=0$.

Solution:

$x^{2}+2 x+1-1+y^{2}-4 y+4-4+z^{2}-16=0 \Longleftrightarrow(x+1)^{2}+(y-2)^{2}+z^{2}=21$
The quadric surface is a sphere; centered at $(-1,2,0)$ with radius $\sqrt{21}$.
6. Identify and briefly describe the surface $y=4 x^{2}+z^{2}$.

Solution:

The quadric surface is an elliptical paraboloid. It looks like an elliptical bowl on its side opening along the positive y-axis.
7. Find $\frac{\partial z}{\partial x}$ for $x e^{y z}+y e^{x z}+z e^{x y}=5$, assuming that $z=f(x, y)$

Solution:

For the given equation, $F(x, y, z)=x e^{y z}+y e^{x z}+z e^{x y}-5=0$

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{e^{y z}+y z e^{x z}+y z e^{x y}}{x y e^{y z}+x y e^{x z}+e^{x y}} .
$$

8. Find the linear approximation to the function, $f(x, y)=\sqrt{x^{2}+y^{2}}$ at the point $P(3,-4)$. Use it to estimate $f(3.06,-3.92)$.

Solution:

Find the tangent plane to $z-\sqrt{x^{2}+y^{2}}=0$ at the point $P(3,-4, f(-3,4)=5)$
The normal vector for the tangent plane is $\nabla F=\left\langle\frac{-2 x}{\sqrt{x^{2}+y^{2}}}, \frac{-2 y}{\sqrt{x^{2}+y^{2}}}, 1\right\rangle$, so $\mathbf{n}=$ $\nabla F(3,-4,5)=\left\langle\frac{-3}{5}, \frac{4}{5}, 1\right\rangle$
So the tangent plane is $\frac{-3}{5}(x-3)+\frac{4}{5}(y+4)+z-5=0$
The linear approximation

$$
L(x, y)=\frac{3}{5}(x-3)-\frac{4}{5}(y+4)+5
$$

And

$$
f(3.06,-3.92)=\frac{3}{5}\left(\frac{6}{100}\right)-\frac{4}{5}\left(-\frac{8}{100}\right)+5=5+\frac{50}{500}=5.1
$$

9. Sketch the domain of the function $f(x, y)=\sqrt{y-x} \ln (y+x)$ in the $x y$-plane.

Solution:

For the domain, $y-x \geq 0$ AND $y+x>0$, thus $y \geq x$ AND $y>-x$.

10. Given the function $f(x, y, z)=e^{x y^{2} z^{3}}$
a. Find $\frac{\partial f}{\partial x}$

Solution:

$\frac{\partial f}{\partial x}=y^{2} z^{3} e^{x y^{2} z^{3}}$
b. Find $\frac{\partial^{2} f}{\partial x^{2}}$

Solution:

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=y^{4} z^{6} e^{x y^{2} z^{3}}
$$

c. Find $\frac{\partial^{2} f}{\partial x \partial y}$

Solution:

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=2 y z^{3} e^{x y^{2} z^{3}}+2 x y^{3} z^{6} e^{x y^{2} z^{3}}=\left(2 y z^{3}+2 x y^{3} z^{6}\right) e^{x y^{2} z^{3}}
$$

d. Find $\frac{\partial^{3} f}{\partial z \partial y \partial x}$

Solution:

$$
\begin{aligned}
\frac{\partial^{3} f}{\partial z \partial y \partial x} & =\frac{\partial^{3} f}{\partial x \partial y \partial z} \\
& =\frac{\partial}{\partial z}\left(\frac{\partial^{2} f}{\partial x \partial y}\right) \\
& =\left(2 y\left(3 z^{2}\right)+2 x y^{3}\left(6 z^{5}\right)\right) e^{x y^{2} z^{3}}+\left(2 y z^{3}+2 x y^{3} z^{6}\right)\left(3 x y^{2} z^{2}\right) e^{x y^{2} z^{3}} \\
& =\left(6 y z^{2}+18 x y^{3} z^{5}+6 x^{2} y^{5} z^{8}\right) e^{x y^{2} z^{3}}
\end{aligned}
$$

11. Find the directional derivative to the surface given by the function $f(x, y)-7+10 x \sqrt{y}$ at the point $P(5,16)$ in the direction of the vector $\vec{v}=\langle-4,3\rangle$.

Solution:

$\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 10 \sqrt{y}, \frac{10 x}{2 \sqrt{y}}\right\rangle$, so $\nabla f(5,16)=\left\langle 10 \sqrt{16}, \frac{5(5)}{\sqrt{16}}\right\rangle=\left\langle 40, \frac{25}{4}\right\rangle$.
Unit vector for directions $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\langle-4,3\rangle}{\sqrt{16+9}}=\left\langle-\frac{4}{5}, \frac{3}{5}\right\rangle$.
So the directional derivative is

$$
D_{\mathbf{u}} f(-4,3)=\left\langle 40, \frac{25}{4}\right\rangle \cdot\left\langle-\frac{4}{5}, \frac{3}{5}\right\rangle=40\left(\frac{-4}{5}\right)+\frac{25}{4}\left(\frac{3}{5}\right)=-32+\frac{15}{4}=-\frac{113}{5}
$$

12. Find an equation of the plane tangent to the surface given by the function $f(x, y)=$ $x^{3}-x^{2} y$ at the point $P(2,1)$.

Solution:

Let $F(x, y, z)=z-x^{3}+x^{2} y=0$ so $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle-3 x^{2}+2 x y, x^{2}, 1\right\rangle$
The point on the plane is $\left(2,1, f(2,1)=2^{3}-2^{2} \cdot 1=4\right)=(2,1,4)$.

And $\nabla F(2,1,4)=\langle-8,4,1\rangle$.

Thus the tangent plane to the surface at P is

$$
\begin{aligned}
-8(x-2)+4(y-1)+z-4 & =0 \\
z & =8(x-2)-4(y-1)+4 \\
z & =8 x-4 y-8
\end{aligned}
$$

13. For $f(x, y)=x^{2}-y^{2}$, find a line in the x direction tangent to the surface defined by f at $(1,2)$.

Solution:

The direction vector for the tangent line is $\mathbf{v}=\left\langle 1,0, D_{u} f(1,2)\right\rangle$. Note the first two components are known because we are going in the x direction to the surface. The direction from the point $P(1,2)$ is $\mathbf{u}=\langle 1,0\rangle=\mathbf{i}$.
$\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\langle 2 x,-2 y\rangle$, so $\nabla f(1,2)=\langle 2,-4\rangle$
$D_{u} f(1,2)=\langle 2,-4\rangle \cdot\langle 1,0\rangle=2$
Thus direction vector for the tangent line is $\mathbf{v}=\left\langle 1,0, D_{u} f(1,2)\right\rangle=\langle 1,0,2\rangle$.
The point on the tangent line is $P\left(1,2, f(1,2)=1^{2}-2^{2}=-3\right)=P(1,2,-3)$
Tangent line in the x direction is

$$
\begin{aligned}
& \mathbf{r}(t) & =\langle 1,2,-3\rangle+t\langle 1,0,2\rangle \quad t \in \mathbb{R} \\
\text { OR } & \mathbf{r}(t) & =\langle 1+t, 2,-3+2 t\rangle
\end{aligned}
$$

14. Suppose that the temperature w (in degrees Celsius) at the point (x, y) is given by $w=$ $f(x, y)=5+0.002 x^{2}+0.003 y^{2}$. In what direction should the grasshopper hop from the point $(10,20)$ to get warmer as quickly as possible? What is the rate of change of the temperature in this direction?

Solution:

$\nabla w=\left\langle f_{x}, f_{y}\right\rangle=\langle 0.004 x, 0.006 y\rangle \Longrightarrow \nabla w(10,20)=\langle 0.04,0.12\rangle$
The direction to get warm as quickly as possible (the direction of the maximum directional derivative, $D_{\mathbf{u}} f=|\nabla w| \cos \theta$) is in the direction of the gradient ($\theta=0$), so direction is $\nabla w(10,20)=\langle 0.04,0.12\rangle$ OR $\frac{\langle 0.04,0.12\rangle}{|\langle 0.04,0.12\rangle|}=\frac{1}{0.126}\langle 0.04 .0 .12\rangle$.

The rate of change in this direction is $|\nabla w(10,20)|=\sqrt{(0.04)^{2}+(0.12)^{2}}=0.126$
15. Find the directional derivative to the function $f(x, y, z)=2 z \sqrt{x y}$ at the point $(2,2,3)$ in the direction of the vector $\mathbf{v}=\langle 1,1,1\rangle$.

Solution:

$\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle\frac{y z}{\sqrt{x y}}, \frac{x z}{\sqrt{x y}}, 2 \sqrt{x y}\right\rangle \Longrightarrow \nabla f(2,2,3)=\langle 3,3,4\rangle$.
The unit vector for direction is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\langle 1,1,1\rangle}{\sqrt{1+1+1}}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$.
Thus $D_{\mathbf{u}} f(2,2,3)=\langle 3,3,4\rangle \cdot\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle=\frac{3}{\sqrt{3}}+\frac{3}{\sqrt{3}}+\frac{4}{\sqrt{3}}=\frac{10}{\sqrt{3}}=\frac{10 \sqrt{3}}{3}$
16. Use the method of Lagrange mulitipliers to find the dimensions of a rectangular box (with a lid) with largest volume, if the total surface area is $96 \mathrm{~cm}^{2}$.

Solution:

The volume is $V=x y z$ where $x>0, y>0, z>0$
Constraint: Surface area is $96, S=2 x y+2 y z+2 x z=96$ OR $g(x, y, z)=x y+y z+x z-48=0$

The gradient vectors are $\nabla V=\left\langle V_{x}, V_{y}, V_{z}\right\rangle=\langle y z, x z, x y\rangle$ and $\nabla g=\langle y+z, x+z, x+y\rangle$.

Solve $\nabla V=\lambda \nabla g$ and $g(x, y, z)=0$

$$
\begin{align*}
& y z=\lambda(y+z) \tag{1}\\
& x z=\lambda(x+z) \tag{2}\\
& x y=\lambda(x+y) \tag{3}\\
& 48=x y+y z+x z \tag{4}
\end{align*}
$$

From equations (1), (2), and (3), $x y z=\lambda(x y+x z)+\lambda(x y+y z)+\lambda(x z+y z)$, thus

$$
\begin{aligned}
\lambda(x y+x z)=\lambda(x y+y z) & \Longleftrightarrow \lambda(x y+x z)-\lambda(x y+y z)=0 \\
& \Longleftrightarrow \lambda(x y+x z-x y-y z)=\lambda z(x-y)=0
\end{aligned}
$$

Since $z \neq 0$, the solution is $x=y$

$$
\begin{aligned}
\lambda(x y+x z)=\lambda(x z+y z) & \Longleftrightarrow \lambda(x y+x z)-\lambda(x z+y z)=0 \\
& \Longleftrightarrow \lambda(x y+x z-x z-y z)=\lambda y(x-z)=0
\end{aligned}
$$

Since $y \neq 0$, the solution is $x=z$

Thus $x=y=z$,
$g(x, x, x)=x^{2}+x^{2}+x^{2}-48=0 \Longleftrightarrow 3 x^{2}=48 \Longleftrightarrow x^{2}=16 \Longleftrightarrow x=4$ (note $x \neq-4$)
So the dimensions of the box with the largest volume is $x=y=z=4$.
17. Find $\frac{\partial z}{\partial t}$ for $z=\sin \left(x^{2} y\right), x=\frac{s}{t}$, and $y=t^{2} e^{s t}$.

Solution:

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}=2 x y \cos \left(x^{2} y\right) \cdot\left(-\frac{s}{t^{2}}\right)+x^{2} \cos \left(x^{2} y\right) \cdot\left(2 t e^{s t}+s t^{2} e^{s t}\right)
$$

18. Find the limit or state that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} e^{\sin (x+y-\pi / 2)}
$$

Solution:

$$
\lim _{(x, y) \rightarrow(0,0)} e^{\sin (x+y-\pi / 2)}=e^{\sin (-\pi / 2)}=e^{-1}
$$

19. Show the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{3 x^{2}+y^{2}}
$$

Solution:

Consider the path $y=m x$ through the origin, then

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{3 x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{4 x(m x)}{3 x^{2}+(m x)^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{4 m x^{2}}{x^{2}\left(3+m^{2}\right)}=\frac{4 m}{3+m^{2}}
$$

Thus the limit does not exist because the value of the limit changes for different values of m.
20. Find ∇f for $f(x, y, z)=x y+x z+y z+4$.

Solution:

$\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle y+z, x+z, x+y\rangle$
21. Find the direction in which the function $f(x, y, z)=x e^{z}-y e^{x}$ decreases most rapidly from the point $P(0,2,0)$.

Solution:

$\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle e^{z}-y e^{x},-e^{x}, x e^{z}\right\rangle$ so $\nabla f(0,2,0)=\left\langle e^{0}-2 e^{0},-e^{0}, 0 e^{0}\right\rangle=\langle-1,-1,0\rangle$.
So the direction in which the function decreases most rapidly is opposite $\nabla f(P)=$ $-\langle-1,-1,0\rangle=\langle 1,1,0\rangle$. (Remember the directional derivative is $D_{\mathbf{u}} f(P)=|\nabla f(P)| \cos \theta$, so the maximum rate of change is when $\theta=0$ and it is minimized when $\theta=\pi$.)
22. For the function $f(x, y)=x^{2}-y$, make a sketch of several level curves. Label at least two level curves with their z-values.

Solution:

23. A rectangular box has a square base. Find the rate at which its volume is changing if its base edge is increasing at $2 \mathrm{~cm} / \mathrm{min}$ and its height is decreasing at $3 \mathrm{~cm} / \mathrm{min}$ at the instant when each dimension is 1 meter.

Solution:

Given: $\frac{d x}{d t}=2 \mathrm{~cm} / \mathrm{min}$ and $\frac{d y}{d t}=-3 \mathrm{~cm} / \mathrm{min}$.
The volume is $V=x^{2} y$.

Now from the chain rule:

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{\partial V}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial V}{\partial y} \cdot \frac{d y}{d t} \\
& =2 x y \frac{d x}{d t}+x^{2} \frac{d y}{d t} \\
\left.\frac{d V}{d t}\right|_{(100,100)} & =2(100)(100)(2)+(100)^{2}(-3) \\
& =4(100)^{2}-3(100)^{2}=100^{2}=10,000
\end{aligned}
$$

24. Use the method of Lagrange Multipliers to find the minimum value of the function $f(x, y)=x^{2}+y+2 z$ subject to the constrain $x^{2}+2 y^{2}+z^{2}=1$.

Solution:

The gradient vectors are $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle 2 x, 1,2\rangle$ and $\nabla g=\langle 2 x, 4 y, 2 z\rangle$.
Solve $\nabla V=\lambda \nabla g$ and $g(x, y, z)=x^{2}+2 y^{2}+z^{2}-1=0$

$$
\begin{align*}
2 x & =2 \lambda x \tag{5}\\
1 & =4 \lambda y \tag{6}\\
2 & =2 \lambda z \tag{7}\\
1 & =x^{2}+2 y^{2}+z^{2} \tag{8}
\end{align*}
$$

From equation (5), $2 x=2 \lambda x \Longleftrightarrow 2 x-2 \lambda x=2 x(1-\lambda)=0$ so $x=0$ or $\lambda=1$.
From equations (2) and (3):
$1=4 \lambda y=\lambda z \Longrightarrow 4 \lambda y-\lambda z=\lambda(4 y-z)=0 \Longrightarrow z=4 y$ (remember $\lambda=1$)
With $x=0$ and $z=4 y$, we use the constraint
(4) $g(0, y, 4 y)=0^{2}+2 y^{2}+(4 y)^{2}=1 \Longleftrightarrow 18 y^{2}=1 \Longleftrightarrow y^{2}=\frac{1}{18} \Longleftrightarrow y= \pm \sqrt{\frac{1}{18}}=$ $\pm \frac{1}{3 \sqrt{2}}= \pm \frac{\sqrt{2}}{6}$
So $z=4 y \Longrightarrow z=4\left(\pm \frac{1}{3 \sqrt{2}}\right)= \pm \frac{2 \sqrt{2}}{3}$.
Look at the function f, for the points $\left(0, \frac{\sqrt{2}}{6}, \frac{2 \sqrt{2}}{3}\right)$ and $\left(0,-\frac{\sqrt{2}}{6},-\frac{2 \sqrt{2}}{3}\right)$:
$f\left(0, \frac{\sqrt{2}}{6}, \frac{2 \sqrt{2}}{3}\right)=0^{2}+\frac{\sqrt{2}}{6}+2\left(\frac{2 \sqrt{2}}{3}\right)=\frac{\sqrt{2}}{6}+\frac{4 \sqrt{2}}{3}=\frac{9 \sqrt{2}}{6}=\frac{3 \sqrt{2}}{2}$
$f\left(0,-\frac{\sqrt{2}}{6},-\frac{2 \sqrt{2}}{3}\right)=0^{2}-\frac{\sqrt{2}}{6}-2\left(\frac{2 \sqrt{2}}{3}\right)=-\frac{\sqrt{2}}{6}-\frac{4 \sqrt{2}}{3}=-\frac{9 \sqrt{2}}{6}=-\frac{3 \sqrt{2}}{2}$, this is the
MINIMUM
25. Locate and classify the critical points of the function $f(x, y)=3 x y-x^{2} y-x y^{2}$.

Solution:

CP are points where $f_{x}=f_{y}=0$ or either f_{x} or f_{y} are undefined.
Start with $f_{x}=3 y-2 x y-y^{2}=y(3-2 x-y)=0$ so either $y=0$ or $y=3-2 x$
Now consider $f_{y}=3 x-x^{2}-2 x y=0$
if $y=0$, then $f_{y}=3 x-x^{2}=x(3-x)=0 \Longrightarrow x=0$ or $x=3$. So we have critical points $(0,0)$ and $(3,0)$.
if $y=3-2 x$, then $f_{y}=3 x-x^{2}-2 x(3-2 x)=3 x^{2}-3 x=3 x(x-1)=0 \Longrightarrow x=0$ or $x=1$.
So we have critical points $(0,3-2(0)=3)=(0,3)$ and $(1,3-2(1)=1)=(1,1)$.

For classification, the discriminant

$$
\begin{aligned}
D & =f_{x x} f_{y y}-\left(f_{x y}\right)^{2} \\
& =(-2 y)(-2 x)-(3-2 x-2 y)^{2} \\
& =4 x y-(3-2 x-2 y)^{2}
\end{aligned}
$$

CP	$D=4 x y-(3-2 x-2 y)^{2}$	$f_{x x}=-2 y$	Classification
$(0,0)$	$-9<0$		Saddle point
$(3,0)$	$-9<0$		Saddle point
$(0,3)$	$-9<0$		Saddle point
$(1,1)$	$3>0$	$-2<0 \mathrm{CD}$	Local Max

For additional problems, check out the review problems for Chapter 12. Note the questions above are simply a sample of possible questions possible for the exam; it is possible that other types of questions may appear on your exam.

