1. Find the equation of the plane passing through the points (1, 2, 1), (-1, 3, 2), and (0, -1, 5).

Solution:

Label the points P(1,2,1), Q(-1,3,2), and R(0,-1,5). To determine a plane, we need a vector normal to the plane. The vector $\mathbf{n} = \overline{PQ} \times \overline{PR}$ will be orthogonal to the plane containing P, Q, and R.

$$\overline{PQ} = \langle -2, 1, 1 \rangle$$
 and $\overline{PR} = \langle -1, -3, 4 \rangle$

$$\mathbf{n} = \overline{PQ} \times \overline{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 1 & 1 \\ -1 & -3 & 4 \end{vmatrix} = \langle 7, 7, 7 \rangle$$

The plane is 7(x-1) + 7(y-2) + 7(z-1) = 0 or 7x + 7y + 7z = 28 or x + y + z = 4.

2. Determine whether the planes 3x + 2y - 3z = 10 and -6x - 10y + z = 10 are parallel, orthogonal or neither. If neither, what is the angle between the two planes?

Solution:

The normal vector for the first plane is $\mathbf{n}_1 = \langle 3, 2, -3 \rangle$ and for the second plane is $\mathbf{n}_2 = \langle -6, -10, 1 \rangle$, respectively.

Since the normal vectors are not parallel, $\mathbf{n}_2 \neq c \mathbf{n}_2$ for any real number *c*, thus the planes are NOT parallel.

The planes are not orthogonal since the normal vectors are not orthogonal, $\mathbf{n}_1 \times \mathbf{n}_2 = -41 \neq 0$.

The angle between the planes is $\theta = \cos^{-1} \left(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|} \right) \cos^{-1} = \left(\frac{-41}{\sqrt{22}\sqrt{137}} \right)$ Note $\mathbf{n}_1 \cdot \mathbf{n}_2 = 3(-6) + 2(-10) - 3(1) = -41$, $|\mathbf{n}_1| = \sqrt{9 + 4 + 9} = \sqrt{22}$ and $\mathbf{n}_2| = \sqrt{36 + 100 + 1} = \sqrt{137}$.

3. Find an equation of the line of intersection of the planes Q : 2x - y + 3z - 1 = 0 and R : -x + 3y + z - 4 = 0

Solution:

The direction vector for the line **v** is the vector that is orthogonal to the normal vectors $\mathbf{n}_Q = \langle 2, -1, 3 \rangle$ and $\mathbf{n}_R = \langle -1, 3, 1 \rangle$.

$$\mathbf{v} = \mathbf{n}_Q \times \mathbf{n}_R = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 3 \\ -1 & 3 & 1 \end{vmatrix} = \langle -10, -5, 5 \rangle$$

Find a point on the line: Let x = 0 then -y + 3z = 1 and 3y + z = 4. From the first one, y = 3z - 1, plugging this into the second $3(3z - 1) + z = 4 \iff 10z = 7 \iff z = \frac{7}{10}$ and $y = 3\frac{7}{10} - 1 = \frac{11}{10}$, thus a point on the line is $\left(0, \frac{11}{10}, \frac{7}{10}\right)$.

The equation of the line of intersection

$$\mathbf{r}(t) = \left\langle 0, \frac{11}{10}, \frac{7}{10} \right\rangle + t \left\langle -10, -5, 5 \right\rangle \quad t \in \mathbb{R}$$

OR
$$\mathbf{r}(t) = \left\langle -10t, \frac{11}{10} - 5t, \frac{7}{10} + 5t \right\rangle$$
 for $t \in \mathbb{R}$.
OR $x = -10t$, $y = \frac{11}{10} - 5t$, $z = \frac{7}{10} + 5t$ for $t \in \mathbb{R}$.

4. Consider the cylinder $x = z^2 - 4$ in \mathbb{R}^3 . Identify the coordinate axis to which the cylinder is parallel. Sketch the cylinder.

Solution:

5. Identify and briefly describe the surface $x^2 + y^2 + z^2 + 2x - 4y - 16 = 0$.

Solution:

$$x^{2} + 2x + 1 - 1 + y^{2} - 4y + 4 - 4 + z^{2} - 16 = 0 \iff (x+1)^{2} + (y-2)^{2} + z^{2} = 21$$

The quadric surface is a sphere; centered at (-1, 2, 0) with radius $\sqrt{21}$.

6. Identify and briefly describe the surface $y = 4x^2 + z^2$.

Solution:

The quadric surface is an elliptical paraboloid. It looks like an elliptical bowl on its side opening along the positive *y*-axis.

7. Find
$$\frac{\partial z}{\partial x}$$
 for $xe^{yz} + ye^{xz} + ze^{xy} = 5$, assuming that $z = f(x, y)$

Solution:

For the given equation, $F(x, y, z) = xe^{yz} + ye^{xz} + ze^{xy} - 5 = 0$

 $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{e^{yz} + yze^{xz} + yze^{xy}}{xye^{yz} + xye^{xz} + e^{xy}}.$

8. Find the linear approximation to the function, $f(x, y) = \sqrt{x^2 + y^2}$ at the point P(3, -4). Use it to estimate f(3.06, -3.92).

Solution:

Find the tangent plane to $z - \sqrt{x^2 + y^2} = 0$ at the point P(3, -4, f(-3, 4) = 5)

The normal vector for the tangent plane is $\nabla F = \left\langle \frac{-2x}{\sqrt{x^2 + y^2}}, \frac{-2y}{\sqrt{x^2 + y^2}}, 1 \right\rangle$, so $\mathbf{n} = \nabla F(3, -4, 5) = \left\langle \frac{-3}{5}, \frac{4}{5}, 1 \right\rangle$

So the tangent plane is $\frac{-3}{5}(x-3) + \frac{4}{5}(y+4) + z - 5 = 0$ The linear approximation

$$L(x,y) = \frac{3}{5}(x-3) - \frac{4}{5}(y+4) + 5$$

And

$$f(3.06, -3.92) = \frac{3}{5} \left(\frac{6}{100}\right) - \frac{4}{5} \left(-\frac{8}{100}\right) + 5 = 5 + \frac{50}{500} = 5.1$$

9. Sketch the domain of the function $f(x,y) = \sqrt{y-x} \ln(y+x)$ in the *xy*-plane.

Solution:

For the domain, $y - x \ge 0$ AND y + x > 0, thus $y \ge x$ AND y > -x.

- 10. Given the function $f(x, y, z) = e^{xy^2z^3}$
 - a. Find $\frac{\partial f}{\partial x}$ **Solution:** $\frac{\partial f}{\partial x} = y^2 z^3 e^{xy^2 z^3}$

b. Find $\frac{\partial^2 f}{\partial r^2}$

Solution:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = y^4 z^6 e^{xy^2 z^2}$$

c. Find $\frac{\partial^2 f}{\partial x \partial y}$

Solution:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = 2yz^3 e^{xy^2 z^3} + 2xy^3 z^6 e^{xy^2 z^3} = \left(2yz^3 + 2xy^3 z^6 \right) e^{xy^2 z^3}$$

d. Find $\frac{\partial^{o} f}{\partial z \partial y \partial x}$

Solution:

$$\begin{aligned} \frac{\partial^3 f}{\partial z \partial y \partial x} &= \frac{\partial^3 f}{\partial x \partial y \partial z} \\ &= \frac{\partial}{\partial z} \left(\frac{\partial^2 f}{\partial x \partial y} \right) \\ &= \left(2y(3z^2) + 2xy^3(6z^5) \right) e^{xy^2 z^3} + \left(2yz^3 + 2xy^3z^6 \right) (3xy^2 z^2) e^{xy^2 z^3} \\ &= \left(6yz^2 + 18xy^3 z^5 + 6x^2 y^5 z^8 \right) e^{xy^2 z^3} \end{aligned}$$

11. Find the directional derivative to the surface given by the function $f(x, y) - 7 + 10x\sqrt{y}$ at the point P(5, 16) in the direction of the vector $\vec{v} = \langle -4, 3 \rangle$.

Solution:

$$\nabla f = \langle f_x, f_y \rangle = \left\langle 10\sqrt{y}, \frac{10x}{2\sqrt{y}} \right\rangle, \text{ so } \nabla f(5, 16) = \left\langle 10\sqrt{16}, \frac{5(5)}{\sqrt{16}} \right\rangle = \left\langle 40, \frac{25}{4} \right\rangle.$$

Unit vector for directions $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle -4, 3 \rangle}{\sqrt{16+9}} = \left\langle -\frac{4}{5}, \frac{3}{5} \right\rangle.$

So the directional derivative is

$$D_{\mathbf{u}}f(-4,3) = \left\langle 40, \frac{25}{4} \right\rangle \cdot \left\langle -\frac{4}{5}, \frac{3}{5} \right\rangle = 40\left(\frac{-4}{5}\right) + \frac{25}{4}\left(\frac{3}{5}\right) = -32 + \frac{15}{4} = -\frac{113}{5}$$

12. Find an equation of the plane tangent to the surface given by the function $f(x,y) = x^3 - x^2y$ at the point P(2,1).

Solution:

Let
$$F(x, y, z) = z - x^3 + x^2 y = 0$$
 so $\nabla F = \langle F_x, F_y, F_z \rangle = \langle -3x^2 + 2xy, x^2, 1 \rangle$

The point on the plane is $(2, 1, f(2, 1) = 2^3 - 2^2 \cdot 1 = 4) = (2, 1, 4).$

And $\nabla F(2, 1, 4) = \langle -8, 4, 1 \rangle$.

Thus the tangent plane to the surface at *P* is

$$-8(x-2) + 4(y-1) + z - 4 = 0$$

$$z = 8(x-2) - 4(y-1) + 4$$

$$z = 8x - 4y - 8$$

13. For $f(x, y) = x^2 - y^2$, find a line in the *x* direction tangent to the surface defined by *f* at (1,2).

Solution:

The direction vector for the tangent line is $\mathbf{v} = \langle 1, 0, D_u f(1, 2) \rangle$. Note the first two components are known because we are going in the *x* direction to the surface. The direction from the point P(1,2) is $\mathbf{u} = \langle 1, 0 \rangle = \mathbf{i}$.

$$abla f = \langle f_x, f_y \rangle = \langle 2x, -2y \rangle$$
, so $abla f(1,2) = \langle 2, -4 \rangle$

 $D_u f(1,2) = \langle 2, -4 \rangle \cdot \langle 1, 0 \rangle = 2$

Thus direction vector for the tangent line is $\mathbf{v} = \langle 1, 0, D_u f(1,2) \rangle = \langle 1, 0, 2 \rangle$. The point on the tangent line is $P(1, 2, f(1,2) = 1^2 - 2^2 = -3) = P(1, 2, -3)$

Tangent line in the x direction is

$$\mathbf{r}(t) = \langle 1, 2, -3 \rangle + t \langle 1, 0, 2 \rangle \quad t \in \mathbb{R}$$

OR
$$\mathbf{r}(t) = \langle 1 + t, 2, -3 + 2t \rangle$$

14. Suppose that the temperature w (in degrees Celsius) at the point (x, y) is given by $w = f(x, y) = 5 + 0.002x^2 + 0.003y^2$. In what direction should the grasshopper hop from the point (10, 20) to get warmer as quickly as possible? What is the rate of change of the temperature in this direction?

Solution:

$$\nabla w = \langle f_x, f_y \rangle = \langle 0.004x, 0.006y \rangle \implies \nabla w(10, 20) = \langle 0.04, 0.12 \rangle$$

The direction to get warm as quickly as possible (the direction of the maximum directional derivative, $D_{\mathbf{u}}f = |\nabla w| \cos \theta$) is in the direction of the gradient ($\theta = 0$), so direction is $\nabla w(10, 20) = \langle 0.04, 0.12 \rangle$ OR $\frac{\langle 0.04, 0.12 \rangle}{|\langle 0.04, 0.12 \rangle|} = \frac{1}{0.126} \langle 0.04.0.12 \rangle$.

The rate of change in this direction is $|\nabla w(10, 20)| = \sqrt{(0.04)^2 + (0.12)^2} = 0.126$

15. Find the directional derivative to the function $f(x, y, z) = 2z\sqrt{xy}$ at the point (2, 2, 3) in the direction of the vector $\mathbf{v} = \langle 1, 1, 1 \rangle$.

Solution:

$$\nabla f = \langle f_x, f_y, f_z \rangle = \left\langle \frac{yz}{\sqrt{xy}}, \frac{xz}{\sqrt{xy}}, 2\sqrt{xy} \right\rangle \implies \nabla f(2, 2, 3) = \langle 3, 3, 4 \rangle.$$
The unit vector for direction is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle 1, 1, 1 \rangle}{\sqrt{1+1+1}} = \frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle.$
Thus $D_{\mathbf{u}}f(2, 2, 3) = \langle 3, 3, 4 \rangle \cdot \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle = \frac{3}{\sqrt{3}} + \frac{3}{\sqrt{3}} + \frac{4}{\sqrt{3}} = \frac{10}{\sqrt{3}} = \frac{10\sqrt{3}}{3}$

16. Use the method of Lagrange mulitipliers to find the dimensions of a rectangular box (with a lid) with largest volume, if the total surface area is 96 cm^2 .

The volume is V = xyz where x > 0, y > 0, z > 0Constraint: Surface area is 96, S = 2xy + 2yz + 2xz = 96 OR g(x, y, z) = xy + yz + xz - 48 = 0

The gradient vectors are $\nabla V = \langle V_x, V_y, V_z \rangle = \langle yz, xz, xy \rangle$ and $\nabla g = \langle y + z, x + z, x + y \rangle$.

Solve $\nabla V = \lambda \nabla g$ and g(x, y, z) = 0

$$yz = \lambda(y+z) \tag{1}$$

$$xz = \lambda(x+z) \tag{2}$$

$$xy = \lambda(x+y) \tag{3}$$

$$48 = xy + yz + xz \tag{4}$$

From equations (1), (2), and (3), $xyz = \lambda(xy + xz) + \lambda(xy + yz) + \lambda(xz + yz)$, thus

$$\begin{split} \lambda(xy+xz) &= \lambda(xy+yz) \iff \lambda(xy+xz) - \lambda(xy+yz) = 0 \\ \iff \lambda(xy+xz-xy-yz) = \lambda z(x-y) = 0 \end{split}$$

Since $z \neq 0$, the solution is x = y

$$\begin{split} \lambda(xy+xz) &= \lambda(xz+yz) \iff \lambda(xy+xz) - \lambda(xz+yz) = 0 \\ &\iff \lambda(xy+xz-xz-yz) = \lambda y(x-z) = 0 \end{split}$$

Since $y \neq 0$, the solution is x = z

Thus x = y = z, $g(x, x, x) = x^2 + x^2 + x^2 - 48 = 0 \iff 3x^2 = 48 \iff x^2 = 16 \iff x = 4$ (note $x \neq -4$) So the dimensions of the box with the largest volume is x = y = z = 4.

17. Find
$$\frac{\partial z}{\partial t}$$
 for $z = sin(x^2y)$, $x = \frac{s}{t}$, and $y = t^2 e^{st}$

Solution: $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t} = 2xy\cos(x^2y) \cdot \left(-\frac{s}{t^2}\right) + x^2\cos(x^2y) \cdot \left(2te^{st} + st^2e^{st}\right)$

18. Find the limit or state that it does not exist:

$$\lim_{(x,y)\to(0,0)} e^{\sin(x+y-\pi/2)}$$

Solution:

$$\lim_{(x,y)\to(0,0)} e^{\sin(x+y-\pi/2)} = e^{\sin(-\pi/2)} = e^{-1}$$

19. Show the following limit does not exist:

$$\lim_{(x,y)\to(0,0)} \frac{4xy}{3x^2 + y^2}$$

Solution:

Consider the path y = mx through the origin, then

$$\lim_{(x,y)\to(0,0)}\frac{4xy}{3x^2+y^2} = \lim_{(x,y)\to(0,0)}\frac{4x(mx)}{3x^2+(mx)^2} = \lim_{(x,y)\to(0,0)}\frac{4mx^2}{x^2(3+m^2)} = \frac{4m}{3+m^2}$$

Thus the limit does not exist because the value of the limit changes for different values of m.

20. Find ∇f for f(x, y, z) = xy + xz + yz + 4.

Solution:

 $\nabla f = \langle f_x, f_y, f_z \rangle = \langle y + z, x + z, x + y \rangle$

21. Find the direction in which the function $f(x, y, z) = xe^z - ye^x$ decreases most rapidly from the point P(0, 2, 0).

Solution:

$$\nabla f = \langle f_x, f_y, f_z \rangle = \langle e^z - ye^x, -e^x, xe^z \rangle \text{ so } \nabla f(0, 2, 0) = \langle e^0 - 2e^0, -e^0, 0e^0 \rangle = \langle -1, -1, 0 \rangle$$

So the direction in which the function decreases most rapidly is opposite $\nabla f(P) = -\langle -1, -1, 0 \rangle = \langle 1, 1, 0 \rangle$. (Remember the directional derivative is $D_{\mathbf{u}}f(P) = |\nabla f(P)| \cos \theta$, so the maximum rate of change is when $\theta = 0$ and it is minimized when $\theta = \pi$.)

22. For the function $f(x,y) = x^2 - y$, make a sketch of several level curves. Label at least two level curves with their *z*-values.

23. A rectangular box has a square base. Find the rate at which its volume is changing if its base edge is increasing at 2 cm/min and its height is decreasing at 3 cm/min at the instant when each dimension is 1 meter.

24. Use the method of Lagrange Multipliers to find the minimum value of the function $f(x, y) = x^2 + y + 2z$ subject to the constrain $x^2 + 2y^2 + z^2 = 1$.

Solution:

The gradient vectors are $\nabla f = \langle f_x, f_y, f_z \rangle = \langle 2x, 1, 2 \rangle$ and $\nabla g = \langle 2x, 4y, 2z \rangle$.

Solve $\nabla V = \lambda \nabla g$ and $g(x, y, z) = x^2 + 2y^2 + z^2 - 1 = 0$

$$2x = 2\lambda x \tag{5}$$

$$1 = 4\lambda y \tag{6}$$

$$2 = 2\lambda z \tag{7}$$

$$1 = x^2 + 2y^2 + z^2 \tag{8}$$

From equation (5), $2x = 2\lambda x \iff 2x - 2\lambda x = 2x(1 - \lambda) = 0$ so x = 0 or $\lambda = 1$.

From equations (2) and (3): $1 = 4\lambda y = \lambda z \implies 4\lambda y - \lambda z = \lambda(4y - z) = 0 \implies z = 4y \text{ (remember } \lambda = 1)$ With x = 0 and z = 4y, we use the constraint (4) $g(0, y, 4y) = 0^2 + 2y^2 + (4y)^2 = 1 \iff 18y^2 = 1 \iff y^2 = \frac{1}{18} \iff y = \pm \sqrt{\frac{1}{18}} = \pm \frac{1}{3\sqrt{2}} = \pm \frac{\sqrt{2}}{6}$ So $z = 4y \implies z = 4\left(\pm \frac{1}{3\sqrt{2}}\right) = \pm \frac{2\sqrt{2}}{3}$. Look at the function f, for the points $\left(0, \frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}\right)$ and $\left(0, -\frac{\sqrt{2}}{6}, -\frac{2\sqrt{2}}{3}\right)$: $f\left(0, \frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}\right) = 0^2 + \frac{\sqrt{2}}{6} + 2\left(\frac{2\sqrt{2}}{3}\right) = \frac{\sqrt{2}}{6} + \frac{4\sqrt{2}}{3} = \frac{9\sqrt{2}}{6} = \frac{3\sqrt{2}}{2}$ $f\left(0, -\frac{\sqrt{2}}{6}, -\frac{2\sqrt{2}}{3}\right) = 0^2 - \frac{\sqrt{2}}{6} - 2\left(\frac{2\sqrt{2}}{3}\right) = -\frac{\sqrt{2}}{6} - \frac{4\sqrt{2}}{3} = -\frac{9\sqrt{2}}{6} = -\frac{3\sqrt{2}}{2}$, this is the MINIMUM

25. Locate and classify the critical points of the function $f(x, y) = 3xy - x^2y - xy^2$.

Solution:

CP are points where $f_x = f_y = 0$ or either f_x or f_y are undefined.

Start with $f_x = 3y - 2xy - y^2 = y(3 - 2x - y) = 0$ so either y = 0 or y = 3 - 2xNow consider $f_y = 3x - x^2 - 2xy = 0$

if y = 0, then $f_y = 3x - x^2 = x(3 - x) = 0 \implies x = 0$ or x = 3. So we have critical points (0,0) and (3,0).

if y = 3 - 2x, then $f_y = 3x - x^2 - 2x(3 - 2x) = 3x^2 - 3x = 3x(x - 1) = 0 \implies x = 0$ or x = 1. So we have critical points (0, 3 - 2(0) = 3) = (0, 3) and (1, 3 - 2(1) = 1) = (1, 1). For classification, the discriminant

$$D = f_{xx}f_{yy} - (f_{xy})^2$$

= (-2y)(-2x) - (3 - 2x - 2y)^2
= 4xy - (3 - 2x - 2y)^2

CP	$D = 4xy - (3 - 2x - 2y)^2$	$f_{xx} = -2y$	Classification
(0,0)	-9 < 0		Saddle point
(3,0)	-9 < 0		Saddle point
(0,3)	-9 < 0		Saddle point
(1,1)	3 > 0	-2 < 0 CD	Local Max

For additional problems, check out the review problems for Chapter 12. Note the questions above are simply a sample of possible questions possible for the exam; it is possible that other types of questions may appear on your exam.