Name
 Calculus III
 March 9, 2018

Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$ and $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$

Question	Points	Score
1	8	
2	8	
3	12	
4	8	
5	8	
6	8	
7	8	
8	8	
9	14	
10	10	
11	8	
Total:	100	

1. (8 points) Complete test corrections.
2. (8 points) Find and sketch the domain of $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}-25}}$.
3. (12 points) Evaluate each limit or show it does not exist.
a. $\lim _{(x, y) \rightarrow(0,0)} \tan ^{-1}\left(\frac{1}{x^{2}+y^{2}}\right)$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{3 x^{2}+y^{2}}$
4. (8 points) If $w=e^{x y z}$, compute $\frac{\partial^{3} w}{\partial y^{2} \partial x}$.
5. (8 points) Find an equation of the tangent plane to $z=\ln (1+x y)$ at the point $(1,2)$.
6. (8 points) Let $w=\frac{x-z}{y+z}$ where $x=s+t, y=s t$, and $z=s-t$. Compute $\frac{\partial w}{\partial s}$.
7. (8 points) Find a function $f(x, y)$ satisfying $\nabla f(x, y)=\left\langle 21 x^{2} y^{2}+4 y^{2}+3 y+8,14 x^{3} y+8 x y+3 x+8 y\right\rangle$, if such an f exists.
8. (8 points) Find parametric equations for the tangent line to the surface $z=x^{2}+2 x y-y^{3}$ at the point $(3,2)$ and in the direction of $\mathbf{v}=\langle 4,3\rangle$.
9. (14 points) Find the local maxima, local minima, and saddle points of $f(x, y)=x^{4}+4 x^{2} y-8 x^{2}+$ $8 y^{2}-16 y+16$.
10. (10 points) Find the extreme values of $f(x, y)=2 x^{2}+y^{2}+2$ subject to the constraint $x^{2}+4 y^{2}=4$.
11. (8 points) Find the maximum rate of change of $f(x, y)=4+x^{2}+3 y^{2}$ at the point $\left(2,-\frac{1}{2}\right)$ and the direction in which it occurs.
