Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta$ and $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \mid \sin \theta$

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:
Print Name:
\qquad
Date:
\qquad
\qquad

Table 12.1

Name	Standard Equation
Ellipsoid	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad$ All traces are ellipses.

Features

Elliptic paraboloid

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Traces with $z=z_{0}>0$ are ellipses. Traces with $x=x_{0}$ or $y=y_{0}$ are parabolas.

Hyperboloid $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \quad$ Traces with $z=z_{0}$ are ellipses for all z_{0}. Traces with of one sheet $\quad \overline{a^{2}}+\frac{b^{2}}{b^{2}}-\overline{c^{2}}=1$ $x=x_{0}$ or $y=y_{0}$ are hyperbolas.

Hyperboloid of two sheets

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Traces with $z=z_{0}$ with $\left|z_{0}\right|>|c|$ are ellipses. Traces with $x=x_{0}$ and $y=y_{0}$ are hyperbolas.

Elliptic cone $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$
Traces with $z=z_{0} \neq 0$ are ellipses. Traces with $x=x_{0}$ or $y=y_{0}$ are hyperbolas or intersecting lines.

Hyperbolic paraboloid

$$
z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Traces with $z=z_{0} \neq 0$ are hyperbolas. Traces with $x=x_{0}$ or $y=y_{0}$ are parabolas.

Question	Points	Score
1	8	
2	8	
3	6	
4	6	
5	8	
6	8	
7	8	
8	8	
9	8	
10	14	
11	10	
12	8	
Total:	100	

2. (8 points) Find and sketch the domain of $f(x, y)=\sqrt{x^{2}-y}$.

Solution:

$$
x^{2}-y \geq 0 \Rightarrow y \leq x^{2}, \text { so } D=\left\{(x, y): y \leq x^{2}\right\}
$$

3. (6 points) Find the limit $\lim _{(x, y) \rightarrow(1,1)} \frac{x-y}{x^{2}-y^{2}}$.

Solution:

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{x-y}{x^{2}-y^{2}}=\lim _{(x, y) \rightarrow(1,1)} \frac{x-y}{(x-y)(x+y)}=\lim _{(x, y) \rightarrow(1,1)} \frac{1}{x+y}=\frac{1}{2}
$$

4. (6 points) Show that the limit $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y \neq x^{2}}} \frac{y}{x^{2}-y}$ does not exist.

Solution:

Suppose we go through the point $(0,0)$ with a parabola $y=m x^{2}$ with $m \neq 1$ then

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y \neq x^{2}}} \frac{y}{x^{2}-y}=\lim _{(x, y) \rightarrow(0,0)} \frac{m x^{2}}{x^{2}-m x^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{m x^{2}}{x^{2}(1-m)}=\lim _{(x, y) \rightarrow(0,0)} \frac{m}{1-m}=\frac{m}{1-m}
$$

for $m \neq 1$, then the limit changes for different values of m so two paths give different limits and the limit does not exist.
Note: any two paths will work For instance suppose $y=2 x$, the $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x}{x^{2}-2 x}=$ $\lim _{(x, y) \rightarrow(0,0)} \frac{2}{x-2}=-1$ and go through $(0,0)$ throught $y=0$ the $\lim _{(x, y) \rightarrow(0,0)} \frac{0}{x^{2}-0}=0$ so again two paths give different limits and the limit does not exist.
5. (8 points) If $w=x e^{y z}$, compute $\frac{\partial^{3} w}{\partial y \partial x \partial z}$.

Solution:

Start by taking the first derivative with respect to $x: w_{x}=e^{y z}$.
Now take the derivative of w_{x} with respect to $y: w_{x y}=z e^{y z}$.
Finally, take the derivative of $w_{x y}$ with respect to $z: w_{x y z}=e^{y z}+y z e^{y z}$
The ordering $x y z$ is not important since the function is continuous, they can do it any ordering.
Dr. Wolfords class only had to do $w_{x y}$.
6. (8 points) Find an equation of the tangent plane to surface $x^{2}+2 x y-y^{2}+z^{2}=7$ at the point $P(1,-1,3)$.

Solution:

$F(x, y, z)=x^{2}+2 x y-y^{2}+z^{2}-7=0$ so $\nabla F=\langle 2 x+2 y, 2 x-2 y, 2 z\rangle$ And the normal vector to the plane $\mathbf{n}=\nabla F(1,-1,3)=\langle 0,4,6\rangle$.
So the plane is $4(y+1)+6(z-3)=0 \Leftrightarrow 4 y+6 z=14$
7. (8 points) Write a Chain Rule formula for $\frac{\partial w}{\partial s}$ for $w=g(x, y), x=h(r, s, t)$, and $y=k(r, s, t)$.

Solution:

$$
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}
$$

8. (8 points) Find the derivative of the function $\cos (x y)+e^{y z}+\ln (x z)$ at the point $P(1,0,1 / 2)$ in the direction $\mathbf{v}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.

Solution:

$\nabla f=\left\langle-y \sin (x y)+\frac{1}{x},-x \sin (x y)+z e^{y z}, y e^{y z}+\frac{1}{z}\right\rangle$ and
$\nabla f(1,0,1 / 2)=\left\langle 1, \frac{1}{2}, 2\right\rangle$
And the unit vector for the directions is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{\sqrt{9}}\langle 2,1,-2\rangle=\left\langle\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right\rangle$
So $D_{\mathbf{u}} f(1,0,1 / 2)=\left\langle 1, \frac{1}{2}, 2\right\rangle \cdot\left\langle\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right\rangle=\frac{2}{3}+\frac{1}{6}-\frac{4}{3}=-\frac{3}{6}=-\frac{1}{2}$
9. (8 points) Is $f(x, y)=x^{2}-x y+y^{2}-3$ more sensitive to changes in x or to changes in y when it is near the point $(1,2)$? Use differentials to justify your answer.

Solution:

$\Delta z \approx d z=f_{x}(1,2) d x+f_{y}(1,2) d y$.
Now $f_{x}=2 x-y$ and $f_{y}=-x+2 y$, so $f_{x}(1,2)=0$ and $f_{y}(1,2)=3$

Thus $\Delta z \approx 0 d x+3 d y$ and $f(x, y)$ is more sensitive to changes in the y-direction.
10. (14 points) Find the local maxima, local minima, and saddle points of $f(x, y)=$ $2 x^{3}+2 y^{3}-9 x^{2}+3 y^{2}-12 y$.

Solution:

$f_{x}=6 x^{2}-18 x \quad f_{x}=6 x(x-3)=0 \Rightarrow x=0$ or $x=3$
$f_{y}=6 y^{2}+6 y-12 \quad f_{y}=6(y+2)(y-1)=0 \Rightarrow y=-2$ or $y=1$

Critical Points are: $(0,-2),(0,1),(3,-2),(3,1)$

To classify: $f_{x x}=12 x-18=6(2 x-3), f_{y y}=12 y+6=6(2 y+1)$, and $f_{x y}=0$
So $D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=36(2 x-3)(2 y+1)$

CP	$D(x, y)$	$f_{x x}$	Classification
$(0,-2)$	$D>0(+)$	$f_{x x}<0(-)$	local maximum
$(0,1)$	$D<0(-)$	$f_{x x}<0(-)$	saddle point
$(3,-2)$	$D<0(-)$	$f_{x x}>0(-)$	saddle point
$(3,1)$	$D>0(+)$	$f_{x x}>0(+)$	local minimum

11. (10 points) Use Lagrange multipliers to find the maximum and minimum values of $f(x, y, z)=x^{2} y^{2} z$, assuming $x \geq 0$ and $y \geq 0$, subject to the constraint $2 x^{2}+y^{2}+z^{2}=25$.

Solution:

$\nabla f=\lambda \nabla g$

Our equations are:

$$
\begin{aligned}
2 x y^{2} z & =4 \lambda x \\
2 x^{2} y z & =2 \lambda y \\
x^{2} y^{2} & =2 \lambda z
\end{aligned}
$$

So $2 x^{2} y^{2} z=4 \lambda x^{2}=2 \lambda y^{2}=2 \lambda z^{2}$ which gives
$2 \lambda\left(2 x^{2}-y^{2}\right)=0 \Rightarrow 2 x^{2}=y^{2}$ or $x^{2}=\frac{1}{2} y^{2}$
$2 \lambda\left(2 z^{2}-y^{2}\right)=0 \Rightarrow 2 z^{2}=y^{2}$ or $z^{2}=\frac{1}{2} y^{2}$
Substituting into the constraint:
$2\left(\frac{1}{2} y^{2}\right)+y^{2}+\frac{1}{2} y^{2}=25 \quad \Rightarrow \quad \frac{5}{2} y^{2}=25 \quad \Rightarrow \quad y^{2}=10 \Rightarrow y=\sqrt{10}$
So $x^{2}=\frac{1}{2} 10 \Rightarrow x=\sqrt{5} \quad$ and $\quad z^{2}=\frac{1}{2} 10 \Rightarrow z= \pm \sqrt{5}$
Critical points are $(\sqrt{5}, \sqrt{10}, \sqrt{5})$ and $(\sqrt{5}, \sqrt{10},-\sqrt{5})$
$f(\sqrt{5}, \sqrt{10}, \sqrt{5})=50 \sqrt{5}, \max f$ and $f(\sqrt{5}, \sqrt{10},-\sqrt{5})=-50 \sqrt{5}, \min f$.
12. (8 points) Find the direction in which the function $h(x, y, z)=\ln \left(x^{2}+y^{2}-1\right)+y+6 z$ increase and decrease the most rapidly at $P(1,1,0)$. What is the rate of change in these directions?

Solution:

$\nabla h=\left\langle\frac{2 x}{x^{2}+y^{2}-1}, \frac{2 y}{x^{2}+y^{2}-1}+1,6\right\rangle$
$\nabla h(1,1,0)=\langle 2,3,6\rangle$
Increases most rapidly in $\langle 2,3,6\rangle$ direction or $\frac{1}{\sqrt{49}}\langle 2,3,6\rangle=\frac{1}{7}\langle 2,3,6\rangle$ with a rate of change of $\sqrt{49}=7$. Decreases most rapidly in $\langle-2,-3,-6\rangle$ direction or

$$
\frac{1}{\sqrt{49}}\langle-2,-3,-6\rangle=\frac{1}{7}\langle-2,-3,-6\rangle \text { with a rate of change of }-\sqrt{49}=-7
$$

