| Exam 2      | Name         |                  |
|-------------|--------------|------------------|
| Math 231-02 | Calculus III | October 10, 2018 |

## Guidelines

## • Calculators are not allowed.

- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like  $\sqrt{3}$  or  $\ln(2)$ , unless they simplify further like  $\sqrt{9} = 3$  or  $\cos(3\pi/4) = -\sqrt{2}/2$ .
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$  and  $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| |\sin \theta$
- 1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

| Signature:  |  |  |
|-------------|--|--|
| Print Name: |  |  |
| Date:       |  |  |

86

| Table 12.1                   |                                                            |                                                                                                                        |           |
|------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|
| Name                         | Standard Equation                                          | Features                                                                                                               | Graph     |
| Ellipsoid                    | $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  | All traces are ellipses.                                                                                               |           |
| Elliptic<br>paraboloid       | $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$                    | Traces with $z = z_0 > 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.                              | x y       |
| Hyperboloid<br>of one sheet  | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$  | Traces with $z = z_0$ are ellipses for all $z_0$ . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.                  | y<br>y    |
| Hyperboloid<br>of two sheets | $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ | Traces with $z = z_0$ with $ z_0  >  c $ are ellipses. Traces<br>with $x = x_0$ and $y = y_0$ are hyperbolas.          | z<br>x, y |
| Elliptic cone                | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$      | Traces with $z = z_0 \neq 0$ are ellipses. Traces with $x = x_0$<br>or $y = y_0$ are hyperbolas or intersecting lines. | z y       |
| Hyperbolic<br>paraboloid     | $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$                    | Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.                         | x x       |

| Question | Points | Score |
|----------|--------|-------|
| 1        | 8      |       |
| 2        | 8      |       |
| 3        | 6      |       |
| 4        | 6      |       |
| 5        | 8      |       |
| 6        | 8      |       |
| 7        | 8      |       |
| 8        | 8      |       |
| 9        | 8      |       |
| 10       | 14     |       |
| 11       | 10     |       |
| 12       | 8      |       |
| Total:   | 100    |       |

2. (8 points) Find and sketch the domain of  $f(x, y) = \sqrt{x^2 - y}$ .



3. (6 points) Find the limit  $\lim_{(x,y)\to(1,1)} \frac{x-y}{x^2-y^2}$ .

### Solution:

$$\lim_{(x,y)\to(1,1)}\frac{x-y}{x^2-y^2} = \lim_{(x,y)\to(1,1)}\frac{x-y}{(x-y)(x+y)} = \lim_{(x,y)\to(1,1)}\frac{1}{x+y} = \frac{1}{2}$$

4. (6 points) Show that the limit  $\lim_{\substack{(x,y)\to(0,0)\\y\neq x^2}}\frac{y}{x^2-y}$  does not exist.

### Solution:

Suppose we go through the point (0,0) with a parabola  $y = mx^2$  with  $m \neq 1$  then

 $\lim_{(x,y)\to(0,0)}\frac{y}{x^2-y} = \lim_{(x,y)\to(0,0)}\frac{mx^2}{x^2-mx^2} = \lim_{(x,y)\to(0,0)}\frac{mx^2}{x^2(1-m)} = \lim_{(x,y)\to(0,0)}\frac{m}{1-m} = \frac{m}{1-m}$  for  $m \neq 1$ , then the limit changes for different values of m so two paths give different limits and the limit does not exist.

Note: any two paths will work For instance suppose y = 2x, the  $\lim_{(x,y)\to(0,0)} \frac{2x}{x^2 - 2x} = \lim_{(x,y)\to(0,0)} \frac{2}{x-2} = -1$  and go through (0,0) through y = 0 the  $\lim_{(x,y)\to(0,0)} \frac{0}{x^2 - 0} = 0$  so again two paths give different limits and the limit does not exist.

5. (8 points) If  $w = xe^{yz}$ , compute  $\frac{\partial^3 w}{\partial u \partial x \partial z}$ .

### Solution:

Start by taking the first derivative with respect to x:  $w_x = e^{yz}$ . Now take the derivative of  $w_x$  with respect to y:  $w_{xy} = ze^{yz}$ . Finally, take the derivative of  $w_{xy}$  with respect to z:  $w_{xyz} = e^{yz} + yze^{yz}$ The ordering xyz is not important since the function is continuous, they can

do it any ordering.

Dr. Wolfords class only had to do  $w_{xy}$ .

6. (8 points) Find an equation of the tangent plane to surface  $x^2 + 2xy - y^2 + z^2 = 7$  at the point P(1, -1, 3).

## Solution:

 $F(x, y, z) = x^2 + 2xy - y^2 + z^2 - 7 = 0$  so  $\nabla F = \langle 2x + 2y, 2x - 2y, 2z \rangle$  And the normal vector to the plane  $\mathbf{n} = \nabla F(1, -1, 3) = \langle 0, 4, 6 \rangle$ .

So the plane is  $4(y+1) + 6(z-3) = 0 \Leftrightarrow 4y + 6z = 14$ 

7. (8 points) Write a Chain Rule formula for  $\frac{\partial w}{\partial s}$  for w = g(x, y), x = h(r, s, t), and y = k(r, s, t).



8. (8 points) Find the derivative of the function  $\cos(xy) + e^{yz} + \ln(xz)$  at the point P(1,0,1/2) in the direction  $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ .

Solution:  

$$\nabla f = \left\langle -y \sin(xy) + \frac{1}{x}, -x \sin(xy) + ze^{yz}, ye^{yz} + \frac{1}{z} \right\rangle \text{ and }$$

$$\nabla f(1, 0, 1/2) = \left\langle 1, \frac{1}{2}, 2 \right\rangle$$
And the unit vector for the directions is  $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{\sqrt{9}} \langle 2, 1, -2 \rangle = \left\langle \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right\rangle$ 
So  $D_{\mathbf{u}}f(1, 0, 1/2) = \left\langle 1, \frac{1}{2}, 2 \right\rangle \cdot \left\langle \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right\rangle = \frac{2}{3} + \frac{1}{6} - \frac{4}{3} = -\frac{3}{6} = -\frac{1}{2}$ 

9. (8 points) Is  $f(x,y) = x^2 - xy + y^2 - 3$  more sensitive to changes in x or to changes in y when it is near the point (1,2)? Use differentials to justify your answer.

# Solution:

 $\Delta z \approx dz = f_x(1,2)dx + f_y(1,2)dy.$ Now  $f_x = 2x - y$  and  $f_y = -x + 2y$ , so  $f_x(1,2) = 0$  and  $f_y(1,2) = 3$ 

Thus  $\Delta z \approx 0 dx + 3 dy$  and f(x, y) is more sensitive to changes in the *y*-direction.

10. (14 points) Find the local maxima, local minima, and saddle points of  $f(x,y) = 2x^3 + 2y^3 - 9x^2 + 3y^2 - 12y$ .

## Solution:

 $f_x = 6x^2 - 18x$   $f_x = 6x(x - 3) = 0 \Rightarrow x = 0$  or x = 3

$$f_y = 6y^2 + 6y - 12$$
  $f_y = 6(y+2)(y-1) = 0 \Rightarrow y = -2$  or  $y = 1$ 

Critical Points are: (0, -2), (0, 1), (3, -2), (3, 1)

To classify:  $f_{xx} = 12x - 18 = 6(2x - 3)$ ,  $f_{yy} = 12y + 6 = 6(2y + 1)$ , and  $f_{xy} = 0$ So  $D(x, y) = f_{xx}f_{yy} - (f_{xy})^2 = 36(2x - 3)(2y + 1)$ 

| СР      | D(x,y)           | $f_{xx}$         | Classification |
|---------|------------------|------------------|----------------|
| (0, -2) | <i>D</i> > 0 (+) | $f_{xx} < 0$ (-) | local maximum  |
| (0, 1)  | <i>D</i> < 0 (-) | $f_{xx} < 0$ (-) | saddle point   |
| (3, -2) | <i>D</i> < 0 (-) | $f_{xx} > 0$ (-) | saddle point   |
| (3, 1)  | <i>D</i> > 0 (+) | $f_{xx} > 0$ (+) | local minimum  |

11. (10 points) Use Lagrange multipliers to find the maximum and minimum values of  $f(x, y, z) = x^2y^2z$ , assuming  $x \ge 0$  and  $y \ge 0$ , subject to the constraint  $2x^2 + y^2 + z^2 = 25$ .

#### Solution:

 $\nabla f = \lambda \nabla g$ 

Our equations are:

$$2xy^{2}z = 4\lambda x$$
$$2x^{2}yz = 2\lambda y$$
$$x^{2}y^{2} = 2\lambda z$$

So  $2x^2y^2z = 4\lambda x^2 = 2\lambda y^2 = 2\lambda z^2$  which gives  $2\lambda(2x^2 - y^2) = 0 \Rightarrow 2x^2 = y^2$  or  $x^2 = \frac{1}{2}y^2$  $2\lambda(2z^2 - y^2) = 0 \Rightarrow 2z^2 = y^2$  or  $z^2 = \frac{1}{2}y^2$ 

Substituting into the constraint:

$$2\left(\frac{1}{2}y^{2}\right) + y^{2} + \frac{1}{2}y^{2} = 25 \implies \frac{5}{2}y^{2} = 25 \implies y^{2} = 10 \Rightarrow y = \sqrt{10}$$
  
So  $x^{2} = \frac{1}{2}10 \Rightarrow x = \sqrt{5}$  and  $z^{2} = \frac{1}{2}10 \Rightarrow z = \pm\sqrt{5}$   
Critical points are  $(\sqrt{5}, \sqrt{10}, \sqrt{5})$  and  $(\sqrt{5}, \sqrt{10}, -\sqrt{5})$   
 $f(\sqrt{5}, \sqrt{10}, \sqrt{5}) = 50\sqrt{5}$ , max f and  $f(\sqrt{5}, \sqrt{10}, -\sqrt{5}) = -50\sqrt{5}$ , min

12. (8 points) Find the direction in which the function  $h(x, y, z) = \ln(x^2+y^2-1)+y+6z$  increase and decrease the most rapidly at P(1, 1, 0). What is the rate of change in these directions?

f.

#### Solution:

$$\nabla h = \left\langle \frac{2x}{x^2 + y^2 - 1}, \frac{2y}{x^2 + y^2 - 1} + 1, 6 \right\rangle$$
  
$$\nabla h(1, 1, 0) = \langle 2, 3, 6 \rangle$$

Increases most rapidly in  $\langle 2, 3, 6 \rangle$  direction or  $\frac{1}{\sqrt{49}} \langle 2, 3, 6 \rangle = \frac{1}{7} \langle 2, 3, 6 \rangle$  with a rate of change of  $\sqrt{49} = 7$ . Decreases most rapidly in  $\langle -2, -3, -6 \rangle$  direction or

$$\frac{1}{\sqrt{49}}\langle -2, -3, -6 \rangle = \frac{1}{7}\langle -2, -3, -6 \rangle$$
 with a rate of change of  $-\sqrt{49} = -7$ .