Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta$ and $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \mid \sin \theta$

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:
Print Name:
\qquad
Date:
\qquad
\qquad

Table 12.1

Name	Standard Equation
Ellipsoid	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad$ All traces are ellipses.

Features

Elliptic paraboloid

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Traces with $z=z_{0}>0$ are ellipses. Traces with $x=x_{0}$ or $y=y_{0}$ are parabolas.

Hyperboloid $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \quad$ Traces with $z=z_{0}$ are ellipses for all z_{0}. Traces with of one sheet $\quad \overline{a^{2}}+\frac{b^{2}}{b^{2}}-\overline{c^{2}}=1$ $x=x_{0}$ or $y=y_{0}$ are hyperbolas.

Hyperboloid of two sheets

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Traces with $z=z_{0}$ with $\left|z_{0}\right|>|c|$ are ellipses. Traces with $x=x_{0}$ and $y=y_{0}$ are hyperbolas.

Elliptic cone $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$
Traces with $z=z_{0} \neq 0$ are ellipses. Traces with $x=x_{0}$ or $y=y_{0}$ are hyperbolas or intersecting lines.

Hyperbolic paraboloid

$$
z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Traces with $z=z_{0} \neq 0$ are hyperbolas. Traces with $x=x_{0}$ or $y=y_{0}$ are parabolas.

Question	Points	Score
1	8	
2	8	
3	6	
4	6	
5	8	
6	8	
7	8	
8	8	
9	8	
10	14	
11	10	
12	8	
Total:	100	

2. (8 points) Find and sketch the domain of $f(x, y)=\sqrt{x^{2}-y}$.
3. (6 points) Find the limit $\lim _{(x, y) \rightarrow(1,1)} \frac{x-y}{x^{2}-y^{2}}$.
4. (6 points) Show that the limit $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y \neq x^{2}}} \frac{y}{x^{2}-y}$ does not exist.
5. (8 points) If $w=x e^{y z}$, compute $\frac{\partial^{3} w}{\partial y \partial x \partial z}$.
6. (8 points) Find an equation of the tangent plane to surface $x^{2}+2 x y-y^{2}+z^{2}=7$ at the point $P(1,-1,3)$.
7. (8 points) Write a Chain Rule formula for $\frac{\partial w}{\partial s}$ for $w=g(x, y), x=h(r, s, t)$, and $y=k(r, s, t)$.
8. (8 points) Find the derivative of the function $\cos (x y)+e^{y z}+\ln (x z)$ at the point $P(1,0,1 / 2)$ in the direction $\mathbf{v}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.
9. (8 points) Is $f(x, y)=x^{2}-x y+y^{2}-3$ more sensitive to changes in x or to changes in y when it is near the point $(1,2)$? Use differentials to justify your answer.
10. (14 points) Find the local maxima, local minima, and saddle points of $f(x, y)=$ $2 x^{3}+2 y^{3}-9 x^{2}+3 y^{2}-12 y$.
11. (10 points) Use Lagrange multipliers to find the maximum and minimum values of $f(x, y, z)=x^{2} y^{2} z$, assuming $x \geq 0$ and $y \geq 0$, subject to the constraint $2 x^{2}+y^{2}+z^{2}=25$.
12. (8 points) Find the direction in which the function $h(x, y, z)=\ln \left(x^{2}+y^{2}-1\right)+y+6 z$ increase and decrease the most rapidly at $P(1,1,0)$. What is the rate of change in these directions?
