Exam 2	Name	
Math 231-02	Calculus III	October 10, 2018

Guidelines

• Calculators are not allowed.

- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln(2)$, unless they simplify further like $\sqrt{9} = 3$ or $\cos(3\pi/4) = -\sqrt{2}/2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ and $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| |\sin \theta$
- 1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:		
Print Name:		
Date:		

86

Table 12.1			
Name	Standard Equation	Features	Graph
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	All traces are ellipses.	
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z = z_0 > 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.	x y
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ are ellipses for all z_0 . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.	y y
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ with $ z_0 > c $ are ellipses. Traces with $x = x_0$ and $y = y_0$ are hyperbolas.	z x, y
Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z = z_0 \neq 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are hyperbolas or intersecting lines.	z y
Hyperbolic paraboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.	x x

Question	Points	Score
1	8	
2	8	
3	6	
4	6	
5	8	
6	8	
7	8	
8	8	
9	8	
10	14	
11	10	
12	8	
Total:	100	

2. (8 points) Find and sketch the domain of $f(x, y) = \sqrt{x^2 - y}$.

3. (6 points) Find the limit $\lim_{(x,y)\to(1,1)} \frac{x-y}{x^2-y^2}$.

4. (6 points) Show that the limit $\lim_{(x,y) \to (0,0) \atop y \neq x^2} \frac{y}{x^2 - y}$ does not exist.

5. (8 points) If $w = xe^{yz}$, compute $\frac{\partial^3 w}{\partial y \partial x \partial z}$.

6. (8 points) Find an equation of the tangent plane to surface $x^2 + 2xy - y^2 + z^2 = 7$ at the point P(1, -1, 3).

7. (8 points) Write a Chain Rule formula for $\frac{\partial w}{\partial s}$ for w = g(x, y), x = h(r, s, t), and y = k(r, s, t).

8. (8 points) Find the derivative of the function $\cos(xy) + e^{yz} + \ln(xz)$ at the point P(1, 0, 1/2) in the direction $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

9. (8 points) Is $f(x,y) = x^2 - xy + y^2 - 3$ more sensitive to changes in *x* or to changes in *y* when it is near the point (1,2)? Use differentials to justify your answer.

10. (14 points) Find the local maxima, local minima, and saddle points of $f(x, y) = 2x^3 + 2y^3 - 9x^2 + 3y^2 - 12y$.

11. (10 points) Use Lagrange multipliers to find the maximum and minimum values of $f(x, y, z) = x^2y^2z$, assuming $x \ge 0$ and $y \ge 0$, subject to the constraint $2x^2 + y^2 + z^2 = 25$.

12. (8 points) Find the direction in which the function $h(x, y, z) = \ln(x^2+y^2-1)+y+6z$ increase and decrease the most rapidly at P(1,1,0). What is the rate of change in these directions?