Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}|\|\mid \mathbf{v}\| \cos \theta$ and $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$
- $\kappa(t)=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}}=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right|$

1. (8 points) To be complete once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Math Department Help Room, Weir 220, and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:
Print Name: \qquad
Date: \qquad

Question	Points	Score
1	8	
2	20	
3	4	
4	12	
5	8	
6	8	
7	8	
8	16	
9	8	
10	8	
Total:	100	

2. Let $\mathbf{u}=\langle 3,-5,2\rangle$ and $\mathbf{v}=\langle-9,5,1\rangle$, find
a. (4 points) Find $\mathbf{v} \cdot \mathbf{u}$.

Solution:

$\mathbf{v} \cdot \mathbf{u}=-9(3)+5(-5)+1(2)=-27-25+2=-50$
b. (4 points) Find the angle between the vectors, \mathbf{u} and \mathbf{v}.

Solution:

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v}||\mathbf{u}|}\right)
$$

From part a, $\mathbf{v} \cdot \mathbf{u}=-50,|\mathbf{v}|=\sqrt{81+25+1}=\sqrt{107}$, and $|\mathbf{u}|=\sqrt{9+25+4}=\sqrt{38}$ so

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v}||\mathbf{u}|}\right)=\cos ^{-1}\left(\frac{-50}{\sqrt{38} \sqrt{107}}\right)
$$

c. (6 points) Find two unit vectors that are orthogonal to both \mathbf{u} and \mathbf{v}.

Solution:

The vector $\mathbf{u} \times \mathbf{v}$ will be orthogonal to both \mathbf{v} and \mathbf{u},
$\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -5 & 2 \\ -9 & 5 & 1\end{array}\right|=\langle-5-10,-(3+18), 15-45\rangle=\langle-15,-21,-30\rangle=-3\langle 5,7,10\rangle$
Two unit vectors orthogonal to \mathbf{u} and \mathbf{v} is $\pm \frac{\mathbf{u} \times \mathbf{v}}{|\mathbf{u} \times \mathbf{v}|}= \pm \frac{1}{\sqrt{174}}\langle 5,7,10\rangle$, since $|\mathbf{u} \times \mathbf{v}|=$ $3 \sqrt{25+49+100}=3 \sqrt{174}$
d. (6 points) The projection of \mathbf{u} onto \mathbf{v}.

Solution:

$$
\operatorname{proj}_{\vec{v}} \vec{u}=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}=\frac{-50}{81+25+1}\langle-9,5,1\rangle=\frac{-50}{107}\langle-9,5,1\rangle
$$

3. (4 points) Find the values of x such that the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal.

Solution:

Two vectors are orthogonal is $\mathbf{u} \cdot \mathbf{v}=0$, for our problem $\mathbf{u} \cdot \mathbf{v}=3(2 x)+2(4)+x(x)=$ $x^{2}+6 x+8=(x+2)(x+4)=0$ if $x=-2$ or $x=-4$.
4. (12 points) Find a line that is perpendicular to the lines $\mathbf{r}=\langle 4 t, 1+2 t, 3 t\rangle$ and $\mathbf{R}=$ $\langle-1+s,-7+2 s,-12+3 s\rangle$ and passes through the point of intersection of the lines \mathbf{r} and \mathbf{R}.

Solution:

The direction vector for the perpendicular line will be the cross product of the direction vector for each line $\mathbf{v}_{r}=\langle 4,2,3\rangle$ and $\mathbf{v}_{R}=\langle 1,2,3\rangle$ is $\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 2 & 3 \\ 1 & 2 & 3\end{array}\right|=\mathbf{i}(6-6)-\mathbf{j}(12-3)+$ $\mathbf{k}(8-2)=-9 \mathbf{j}+6 \mathbf{k}$
To find the point of intersection of the two lines, solve (1) $4 t=-1+s$, (2) $1+2 t=-7+s$ and (3) $3 t=-12+3 s$ from (1) $s=4 t+1$, plug s into (2) $1+2 t=-7+2(4 t+1)$ which results in $6=6 t$ thus $t=1$ and $s=4+1=5$ check that this solution works in (3) $3(1)=-12+15$ which is true. So the point of intersection is $(4,3,3)$.

So the line is $\mathbf{r}(t)=\langle 4,3,3\rangle+t\langle 0,-9,6\rangle=\langle 4,3-9 t, 3+6 t\rangle$.
5. (8 points) Find the area of the parallelogram that has two adjacent sides $\mathbf{u}=2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ and $\mathbf{v}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

Solution:

The area of the parallelogram is $|\mathbf{u} \times \mathbf{v}|$
$\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -2 \\ 3 & 2 & -1\end{array}\right|=\mathbf{i}(1+4)-\mathbf{j}(-2+6)+\mathbf{k}(4+3)=5 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k}$
So $A=|\mathbf{u} \times \mathbf{v}|=\sqrt{25+16+49}=\sqrt{90}$.
6. (8 points) Find a parametric equation of the line tangent to the curve $\mathbf{r}(t)=\langle\sqrt{2 t+1}, \sin \pi t, 4\rangle$ at $t=4$.

Solution:

$\mathbf{r}^{\prime}(t)=\left\langle\frac{1}{2}(2 t+1)^{-1 / 2} \cdot 2, \pi \cos (\pi t), 0\right\rangle$ so the direction of the tangent line is $\mathbf{r}^{\prime}(4)=$ $\left\langle\frac{1}{3}, \pi, 0\right\rangle=\mathbf{v}$
The point on the tangent line where it intersects the curve is $\mathbf{R}_{0}=\mathbf{r}(4)=\langle 3,0,4\rangle$
line tangent is $r \vec{R}=\mathbf{R}_{0}+t \vec{v}$
Parametric equations: $x=3+\frac{1}{3} t, y=\pi t$, and $z=4$ for $t \in \mathbb{R}$
7. (8 points) If the velocity of a particle is $\mathbf{v}(t)=\left\langle\frac{t}{t^{2}+1}, t e^{-t^{2}},-\frac{2 t}{\sqrt{t^{2}+4}}\right\rangle$, find the position vector $\vec{r}(t)$ if $\mathbf{r}(0)=\left\langle 1, \frac{3}{2},-3\right\rangle$.

Solution:

$\mathbf{r}(t)=\int \mathbf{v}(t) d t=\left\langle\int \frac{t}{t^{2}+1} d t, \int t e^{-t^{2}} d t, \int \frac{-2 t}{\sqrt{t^{2}+4}} d t\right\rangle$ (Let $u=t^{2}+1$ in the first integral, $w=-t^{2}$ on the second, and $v=t^{2}+4$ in the third integral)
So $\mathbf{r}(t)=\left\langle\frac{1}{2} \ln \right| t^{2}+1\left|+C_{1},-\frac{1}{2} e^{-t^{2}}+C_{2},-2 \sqrt{t^{2}+4}+C_{3}\right\rangle$
And since
$\mathbf{r}(0)=\left\langle 1, \frac{3}{2},-3\right\rangle=\left\langle\frac{1}{2} \ln 1+C_{1},-\frac{1}{2} e^{0}+C_{2},-2 \sqrt{4}+C_{3}\right\rangle=\left\langle C_{1},-\frac{1}{2}+C_{2},-4+C_{3}\right\rangle$ then
$\mathbf{r}(t)=\left\langle\frac{1}{2} \ln \right| t^{2}+1\left|+1,-\frac{1}{2} e^{-t^{2}}+2,-2 \sqrt{t^{2}+4}+1\right\rangle$
8. (16 points) For the vector curve $\mathbf{r}(t)=\langle\cos t, \sin t, \ln \cos t\rangle$, find the unit tangent vector, the principle unit normal vector, the binormal vector and curvature all at $t=0$.

Solution:

$\vec{r}^{\prime}(t)=\left\langle-\sin t, \cos t, \frac{1}{\cos t} \cdot-\sin t\right\rangle=\langle-\sin t, \cos t,-\tan t\rangle$ and
$\left|\vec{r}^{\prime}(t)\right|=\sqrt{\sin ^{2} t+\cos ^{2} t+\tan ^{2} t}=\sqrt{1+\tan ^{2} t}=\sqrt{\sec ^{2} t}=\sec t$,

Thus

$$
\begin{aligned}
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|} & =\frac{1}{\sec t}\langle-\sin t, \cos t,-\tan t\rangle \\
& =\left\langle-\sin t \cos t, \cos ^{2} t,-\sin t\right\rangle=\left\langle-\frac{1}{2} \sin 2 t, \cos ^{2} t,-\sin t\right\rangle
\end{aligned}
$$

So $\vec{T}^{\prime}(t)=\langle-\cos 2 t,-2 \cos t \sin t,-\cos t\rangle$ and $\vec{T}^{\prime}(0)=\langle-1,0,-1\rangle,\left|\vec{T}^{\prime}(0)\right|=\sqrt{1+0+1}=\sqrt{2}$

Finally, $\vec{T}(0)=\langle 0,1,0\rangle$,
$\vec{N}(0)=\frac{\vec{T}^{\prime}(0)}{\left|\vec{T}^{\prime}(0)\right|}=\frac{1}{\sqrt{2}}\langle-1,0,-1\rangle=\left\langle-\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right\rangle$
$\vec{B}(0)=\vec{T}(0) \times \vec{N}(0)=\left\langle-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\rangle$
And curvature $\kappa(0)=\frac{1}{\left|\vec{r}^{\prime}(0)\right|}\left|\vec{T}^{\prime}(0)\right|=\frac{1}{\sec 0} \sqrt{2}=\sqrt{2}$.
9. (8 points) Find the arc length of the curve $\mathbf{r}(t)=\left\langle\cos (2 t), 2 t^{3 / 2}, \sin (2 t)\right\rangle$ for $0 \leq t \leq 5$.

Solution:

To find arc length $L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t$
$\vec{r}^{\prime}(t)=\left\langle-2 \sin 2 t, 3 t^{1 / 2}, 2 \cos 2 t\right\rangle$
And $\left|\vec{r}^{\prime}(t)\right|=\sqrt{4 \sin ^{2} 2 t+9 t+4 \cos ^{2} 2 t}=\sqrt{4+9 t}$
Now arc length
$L=\int_{0}^{5} \sqrt{4+9 t} d t=\int_{4}^{49} \frac{1}{9} \sqrt{u} d u=\left.\frac{1}{9} \cdot \frac{2}{3} u^{3 / 2}\right|_{4} ^{49}=\frac{2}{27}\left(49^{3 / 2}-4^{3 / 2}\right)=\frac{2}{27}\left(7^{3}-2^{3}\right)$
10. (8 points) Determine if the curve $\mathbf{r}(t)=\langle 13 \cos t, 5 \sin t, 12 \sin t\rangle$ for $0 \leq t \leq \pi$ uses arc length as a parameter. If not, find a description that uses arc length as a parameter.

Solution:

$\mathbf{r}^{\prime}(t)=\langle-13 \sin t, 5 \cos t, 12 \cos t\rangle$
So $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{169 \sin ^{2} t+25 \cos ^{2} t+144 \cos ^{2} t}=\sqrt{169\left(\sin ^{2} t+\cos ^{2} t\right)}=\sqrt{169}=13 \neq 1$, therefore, it is not parameterized by arc length.

Now $s(t)=\int_{0}^{t} 13 d u=13 t$ and $t=\frac{s}{13}$.
The description that uses arc length as parameter is

$$
\mathbf{r}(s)=\left\langle 13 \cos \left(\frac{s}{13}\right), 5 \sin \left(\frac{s}{13}\right), 12 \sin \left(\frac{s}{13}\right)\right\rangle \text { for } 0 \leq s \leq 13 \pi .
$$

