Exam 1	Name	
Math 231-03	Calculus III	September 14, 2018

Guidelines

• Calculators are not allowed.

- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln(2)$, unless they simplify further like $\sqrt{9} = 3$ or $\cos(3\pi/4) = -\sqrt{2}/2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.

•
$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$
 and $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$

•
$$\kappa(t) = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3} = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right|$$

1. (8 points) To be complete once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Math Department Help Room, Weir 220, and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:	
Print Name:	
Date	

Question	Points	Score
1	8	
2	20	
3	4	
4	12	
5	8	
6	8	
7	8	
8	16	
9	8	
10	8	
Total:	100	

- **2.** Let $\mathbf{u} = \langle 3, -5, 2 \rangle$ and $\mathbf{v} = \langle -9, 5, 1 \rangle$, find
 - a. (4 points) Find $\mathbf{v} \cdot \mathbf{u}$.

Solution:

 $\mathbf{v} \cdot \mathbf{u} = -9(3) + 5(-5) + 1(2) = -27 - 25 + 2 = -50$

b. (4 points) Find the angle between the vectors, ${f u}$ and ${f v}$.

Solution:

$$\theta = \cos^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v}||\mathbf{u}|}\right)$$

From part a, $\mathbf{v} \cdot \mathbf{u} = -50$, $|\mathbf{v}| = \sqrt{81 + 25 + 1} = \sqrt{107}$, and $|\mathbf{u}| = \sqrt{9 + 25 + 4} = \sqrt{38}$ so

$$\theta = \cos^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v}||\mathbf{u}|}\right) = \cos^{-1}\left(\frac{-50}{\sqrt{38}\sqrt{107}}\right)$$

c. (6 points) Find two unit vectors that are orthogonal to both ${f u}$ and ${f v}$.

Solution:

The vector $\mathbf{u} \times \mathbf{v}$ will be orthogonal to both \mathbf{v} and \mathbf{u} , $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -5 & 2 \\ -9 & 5 & 1 \end{vmatrix} = \langle -5 - 10, -(3 + 18), 15 - 45 \rangle = \langle -15, -21, -30 \rangle = -3 \langle 5, 7, 10 \rangle$ Two unit vectors orthogonal to \mathbf{u} and \mathbf{v} is $\pm \frac{\mathbf{u} \times \mathbf{v}}{|\mathbf{u} \times \mathbf{v}|} = \pm \frac{1}{\sqrt{174}} \langle 5, 7, 10 \rangle$, since $|\mathbf{u} \times \mathbf{v}| = 3\sqrt{25 + 49 + 100} = 3\sqrt{174}$

d. (6 points) The projection of \mathbf{u} onto \mathbf{v} .

Solution:

 $proj_{\vec{v}}\vec{u} = \frac{\vec{u}\cdot\vec{v}}{\vec{v}\cdot\vec{v}}\vec{v} = \frac{-50}{81+25+1}\left\langle -9,5,1\right\rangle = \frac{-50}{107}\left\langle -9,5,1\right\rangle$

3. (4 points) Find the values of x such that the vectors (3, 2, x) and (2x, 4, x) are orthogonal.

Solution:

Two vectors are orthogonal is
$$\mathbf{u} \cdot \mathbf{v} = 0$$
, for our problem $\mathbf{u} \cdot \mathbf{v} = 3(2x) + 2(4) + x(x) = x^2 + 6x + 8 = (x+2)(x+4) = 0$ if $x = -2$ or $x = -4$.

4. (12 points) Find a line that is perpendicular to the lines $\mathbf{r} = \langle 4t, 1+2t, 3t \rangle$ and $\mathbf{R} = \langle -1+s, -7+2s, -12+3s \rangle$ and passes through the point of intersection of the lines \mathbf{r} and \mathbf{R} .

Solution:

The direction vector for the perpendicular line will be the cross product of the direction

vector for each line $\mathbf{v}_r = \langle 4, 2, 3 \rangle$ and $\mathbf{v}_R = \langle 1, 2, 3 \rangle$ is $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix} = \mathbf{i}(6-6) - \mathbf{j}(12-3) + \mathbf{i}(6-6) - \mathbf{j}(12-3) - \mathbf{i}(6-6) - \mathbf{i}(12-3) - \mathbf{i}(1$

 $\mathbf{k}(8-2) = -9\mathbf{j} + 6\mathbf{k}$

To find the point of intersection of the two lines, solve (1) 4t = -1 + s, (2) 1 + 2t = -7 + sand (3) 3t = -12 + 3s from (1) s = 4t + 1, plug *s* into (2) 1 + 2t = -7 + 2(4t + 1) which results in 6 = 6t thus t = 1 and s = 4 + 1 = 5 check that this solution works in (3) 3(1) = -12 + 15 which is true. So the point of intersection is (4,3,3).

So the line is $\mathbf{r}(t) = \langle 4, 3, 3 \rangle + t \langle 0, -9, 6 \rangle = \langle 4, 3 - 9t, 3 + 6t \rangle$.

5. (8 points) Find the area of the parallelogram that has two adjacent sides $\mathbf{u} = 2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

Solution:

The area of the parallelogram is $|\mathbf{u} \times \mathbf{v}|$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -2 \\ 3 & 2 & -1 \end{vmatrix} = \mathbf{i}(1+4) - \mathbf{j}(-2+6) + \mathbf{k}(4+3) = 5\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$$

So $A = |\mathbf{u} \times \mathbf{v}| = \sqrt{25 + 16 + 49} = \sqrt{90}$.

6. (8 points) Find a parametric equation of the line tangent to the curve $\mathbf{r}(t) = \langle \sqrt{2t+1}, \sin \pi t, 4 \rangle$ at t = 4.

Solution:

 $\mathbf{r}'(t) = \left\langle \frac{1}{2} (2t+1)^{-1/2} \cdot 2, \pi \cos(\pi t), 0 \right\rangle$ so the direction of the tangent line is $\mathbf{r}'(4) = \left\langle \frac{1}{3}, \pi, 0 \right\rangle = \mathbf{v}$

The point on the tangent line where it intersects the curve is $\mathbf{R}_0 = \mathbf{r}(4) = \langle 3, 0, 4 \rangle$ line tangent is $r\vec{R} = \mathbf{R}_0 + t\vec{v}$

Parametric equations: $x = 3 + \frac{1}{3}t$, $y = \pi t$, and z = 4 for $t \in \mathbb{R}$

7. (8 points) If the velocity of a particle is $\mathbf{v}(t) = \left\langle \frac{t}{t^2 + 1}, te^{-t^2}, -\frac{2t}{\sqrt{t^2 + 4}} \right\rangle$, find the position vector $\vec{r}(t)$ if $\mathbf{r}(0) = \left\langle 1, \frac{3}{2}, -3 \right\rangle$.

Solution:

$$\mathbf{r}(t) = \int \mathbf{v}(t)dt = \left\langle \int \frac{t}{t^2 + 1} dt, \int t e^{-t^2} dt, \int \frac{-2t}{\sqrt{t^2 + 4}} dt \right\rangle \text{ (Let } u = t^2 + 1 \text{ in the first integral,} \\ w = -t^2 \text{ on the second, and } v = t^2 + 4 \text{ in the third integral)} \\ \text{So } \mathbf{r}(t) = \left\langle \frac{1}{2} \ln |t^2 + 1| + C_1, -\frac{1}{2} e^{-t^2} + C_2, -2\sqrt{t^2 + 4} + C_3 \right\rangle \\ \text{And since} \\ \mathbf{r}(0) = \left\langle 1, \frac{3}{2}, -3 \right\rangle = \left\langle \frac{1}{2} \ln 1 + C_1, -\frac{1}{2} e^0 + C_2, -2\sqrt{4} + C_3 \right\rangle = \left\langle C_1, -\frac{1}{2} + C_2, -4 + C_3 \right\rangle \text{ then } \\ \mathbf{r}(t) = \left\langle \frac{1}{2} \ln |t^2 + 1| + 1, -\frac{1}{2} e^{-t^2} + 2, -2\sqrt{t^2 + 4} + 1 \right\rangle \end{aligned}$$

8. (16 points) For the vector curve $\mathbf{r}(t) = \langle \cos t, \sin t, \ln \cos t \rangle$, find the unit tangent vector, the principle unit normal vector, the binormal vector and curvature **all at** t = 0.

Solution:

$$\vec{r}'(t) = \left\langle -\sin t, \cos t, \frac{1}{\cos t} \cdot -\sin t \right\rangle = \left\langle -\sin t, \cos t, -\tan t \right\rangle$$
 and
 $|\vec{r}'(t)| = \sqrt{\sin^2 t + \cos^2 t + \tan^2 t} = \sqrt{1 + \tan^2 t} = \sqrt{\sec^2 t} = \sec t,$

Thus

$$\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \frac{1}{\sec t} \left\langle -\sin t, \cos t, -\tan t \right\rangle$$
$$= \left\langle -\sin t \cos t, \cos^2 t, -\sin t \right\rangle = \left\langle -\frac{1}{2}\sin 2t, \cos^2 t, -\sin t \right\rangle$$

So $\vec{T}'(t) = \langle -\cos 2t, -2\cos t\sin t, -\cos t \rangle$ and $\vec{T}'(0) = \langle -1, 0, -1 \rangle$, $|\vec{T}'(0)| = \sqrt{1+0+1} = \sqrt{2}$

Finally, $\vec{T}(0) = \langle 0, 1, 0 \rangle$,

$$\vec{N}(0) = \frac{\vec{T}'(0)}{|\vec{T}'(0)|} = \frac{1}{\sqrt{2}} \langle -1, 0, -1 \rangle = \left\langle -\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right\rangle$$
$$\vec{B}(0) = \vec{T}(0) \times \vec{N}(0) = \left\langle -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right\rangle$$
And curvature $\kappa(0) = \frac{1}{|\vec{r}'(0)|} \left| \vec{T}'(0) \right| = \frac{1}{\sec 0} \sqrt{2} = \sqrt{2}.$

9. (8 points) Find the arc length of the curve $\mathbf{r}(t) = \langle \cos(2t), 2t^{3/2}, \sin(2t) \rangle$ for $0 \le t \le 5$.

To find arc length $L = \int_{a}^{b} |\vec{r}'(t)| dt$ $\vec{r}'(t) = \langle -2\sin 2t, 3t^{1/2}, 2\cos 2t \rangle$ And $|\vec{r}'(t)| = \sqrt{4\sin^2 2t + 9t + 4\cos^2 2t} = \sqrt{4 + 9t}$ Now arc length $L = \int_{0}^{5} \sqrt{4 + 9t} dt = \int_{4}^{49} \frac{1}{9} \sqrt{u} du = \frac{1}{9} \cdot \frac{2}{3} u^{3/2} \Big|_{4}^{49} = \frac{2}{27} \left(49^{3/2} - 4^{3/2} \right) = \frac{2}{27} (7^3 - 2^3)$

10. (8 points) Determine if the curve $\mathbf{r}(t) = \langle 13 \cos t, 5 \sin t, 12 \sin t \rangle$ for $0 \le t \le \pi$ uses arc length as a parameter. If not, find a description that uses arc length as a parameter.

Solution:

So $|\mathbf{r}'(t)| = \sqrt{169 \sin^2 t + 25 \cos^2 t + 144 \cos^2 t} = \sqrt{169(\sin^2 t + \cos^2 t)} = \sqrt{169} = 13 \neq 1$, therefore, it is not parameterized by arc length.

Now
$$s(t) = \int_0^t 13 \, du = 13t$$
 and $t = \frac{s}{13}$.

 $\mathbf{r}'(t) = \langle -13\sin t, 5\cos t, 12\cos t \rangle$

The description that uses arc length as parameter is $\mathbf{r}(s) = \left\langle 13 \cos\left(\frac{s}{13}\right), 5 \sin\left(\frac{s}{13}\right), 12 \sin\left(\frac{s}{13}\right) \right\rangle$ for $0 \le s \le 13\pi$.