Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}|\|\mid \mathbf{v}\| \cos \theta$ and $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$
- $\kappa(t)=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}}=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right|$

1. (8 points) To be complete once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Math Department Help Room, Weir 220, and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:
Print Name: \qquad
Date: \qquad

Question	Points	Score
1	8	
2	20	
3	4	
4	12	
5	8	
6	8	
7	8	
8	16	
9	8	
10	8	
Total:	100	

2. Let $\mathbf{u}=\langle 3,-5,2\rangle$ and $\mathbf{v}=\langle-9,5,1\rangle$, find
a. (4 points) Find $\mathbf{v} \cdot \mathbf{u}$.
b. (4 points) Find the angle between the vectors, \mathbf{u} and \mathbf{v}.
c. (6 points) Find two unit vectors that are orthogonal to both \mathbf{u} and \mathbf{v}.
d. (6 points) The projection of \mathbf{u} onto \mathbf{v}.
3. (4 points) Find the values of x such that the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal.
4. (12 points) Find a line that is perpendicular to the lines $\mathbf{r}=\langle 4 t, 1+2 t, 3 t\rangle$ and $\mathbf{R}=$ $\langle-1+s,-7+2 s,-12+3 s\rangle$ and passes through the point of intersection of the lines \mathbf{r} and \mathbf{R}.
5. (8 points) Find the area of the parallelogram that has two adjacent sides $\mathbf{u}=2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ and $\mathbf{v}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
6. (8 points) Find a parametric equation of the line tangent to the curve $\mathbf{r}(t)=\langle\sqrt{2 t+1}, \sin \pi t, 4\rangle$ at $t=4$.
7. (8 points) If the velocity of a particle is $\mathbf{v}(t)=\left\langle\frac{t}{t^{2}+1}, t e^{-t^{2}},-\frac{2 t}{\sqrt{t^{2}+4}}\right\rangle$, find the position vector $\vec{r}(t)$ if $\mathbf{r}(0)=\left\langle 1, \frac{3}{2},-3\right\rangle$.
8. (16 points) For the vector curve $\mathbf{r}(t)=\langle\cos t, \sin t, \ln \cos t\rangle$, find the unit tangent vector, the principle unit normal vector, the binormal vector and curvature all at $t=0$.
9. (8 points) Find the arc length of the curve $\mathbf{r}(t)=\left\langle\cos (2 t), 2 t^{3 / 2}, \sin (2 t)\right\rangle$ for $0 \leq t \leq 5$.
10. (8 points) Determine if the curve $\mathbf{r}(t)=\langle 13 \cos t, 5 \sin t, 12 \sin t\rangle$ for $0 \leq t \leq \pi$ uses arc length as a parameter. If not, find a description that uses arc length as a parameter.
