1. Let R be the region bounded by the curve $y=(x-2)^{2}$ and the line $y=4$.
a. Find the volume of the solid generated by revolving R about the x-axis.
b. Find the volume of the solid generated by revolving R about the y-axis.
c. Find the volume of the solid generated by revolving R about the line $x=-1$.
2. Find the arc length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{3 / 2}$ for $0 \leq x \leq 1$.
3. A conical tank 5 ft in diameter and 10 feet in height is resting on its base. The tank is filled with oil (density $40 \mathrm{lb} / \mathrm{ft}^{3}$), how much work is required to pump all the oil over the top of the tank?
4. Evaluate the following:
a. $\int x \arctan x d x$.
b. $\int \frac{x^{2}+8 x-3}{x^{3}+3 x^{2}} d x$
c. $\int \frac{x^{3}}{\sqrt{x^{2}+9}} d x$
d. $\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x$
e. $\int_{1}^{3} \frac{1}{\sqrt[3]{x-2}} d x$
5. Using calculus, find the surface area of a sphere of radius r.
6. Write the Taylor series for $f(x)=\frac{1}{2 x-5}$ at $a=3$.
7. Find the radius and interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n 4^{n}}$.
8. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$ converges absolutely, converges conditionally or diverges.
9. Determine whether the series $\sum_{n=1}^{\infty} \frac{n^{2}-1}{3 n^{4}+1}$ converges or diverges.
10. Find the six roots of $-64 i$.
11. Find the area of the region inside $r=-3 \cos \theta$ and outside $r=1-\cos \theta$.
12. Replace the polar equation $r=3 \cos \theta$ with the Cartesian equation. Identify or describe the graph.
13. For the parametric curve $x=e^{\sqrt{t}}, y=t-\ln t^{2}$, write the equation of the line tangent to the curve at $t=1$.
14. For curve, C, defined by the parametric equations

$$
x=4 \sqrt{t}, \quad y=\frac{t^{3}}{3}+\frac{1}{2 t^{2}} \quad 1 \leq t \leq 4
$$

a. Find the arc length of the curve C.
b. Find the surface area when the curve C is rotated about the x-axis.
15. Evaluate the expression
a. $\frac{3+2 i}{1+i}$
b. $\left(\frac{1}{2}+\frac{1}{2} i\right)^{15}$
c. $|-1+2 \sqrt{2} i|$

