
Solutions for Practice Questions for Exam 3 Math 132 

 

1. Determine whether or not the sequence  ka  converges and find its limit if it does converge. 
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2. Find the Taylor Series for  
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 , find the power series for each of the following: 
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4. Find the sum of the following series: 
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5. Determine whether the following series are absolutely convergent, conditionally convergent, or divergent. 

.  Justify your answers by citing relevant tests or reason.  
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6. Determine the interval of convergence for the following power series: 
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Solution: Use the ratio test to determine convergence of ka . 
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Solution: Use the ratio test to determine convergence of ka . 
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Thus the IOC is  0,1 . 

 

7. Determine whether the following series converge or diverge.  Justify your answers by citing relevant tests 

or reason.  
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