Solutions for Practice Questions for Exam 3

Math 132
1.  Determine whether or not the sequence {ak} converges and find its limit if it does converge.
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Solution: lim—— ==, therefore the sequence converges.
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Solution: lim —-— = oo, therefore the sequence diverges.
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2. Find the Taylor Series for
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Solution: f(x)=(x=4)", f'(x)==2(x=4)" ..., f 0 (x)=(=1)" (n+1)(x=4)""?, s0
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Solution: f(x)=sinx, f'(x)=cosx, f"(x)=-sinx, f(g)(x)
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3. Give that ¢ =ZX— and sinx:zL , find the power series for each of the following:
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4.  Find the sum of the following series:
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5.  Determine whether the following series are absolutely convergent, conditionally convergent, or divergent.
. Justify your answers by citing relevant tests or reason.
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diverges by the Divergence Test.
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Solution: Z|ak|=zki is divergent since it is a p-series with p=1/3<1. However,
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Solution: Z|ak| = ZF IS convergent since it is a p-series, p=3>1 therefore
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absolutely convergent.

6.  Determine the interval of convergence for the following power series:
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Solution: Use the ratio test to determine convergence of Z|ak| :
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Solution: Use the ratio test to determine convergence of » [a,|.
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;u<1<:>|x—1|<3<:>—2<x<4 Check the endpoints x=—2 and x=4 at x =—2 we get
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% which converges conditionally it is the alternating harmonic series. At x =4 we get

1M 2

% which is a divergent p-series. Thus the IOC is [—2,4)

=
Il
N

e (2x—1)k
¢ Z;‘ k?+1
Solution: Use the ratio test to determine convergence of Z|ak|.
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converges (absolutely) by comparison test so Z ! 1 also converges. At x=0, Z
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Thus the 10C is [0,1].

Determine whether the following series converge or diverge. Justify your answers by citing relevant tests
or reason.
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Solution: Look at " a,|= Z3k this series looks like Zs—k Now
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5 Z is absolutely convergent by the CT which implies Zﬂ IS convergent.
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Solution: Let a(x)= I for [2,00). Now a(x) is a positive and continuous function. Also
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Solution: Note 0<tank <Z vk >1 which implies that —>— <—— vk >1 and since
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