1. Find the interval and radius of convergence for each of the following

a.
$$\sum_{k=0}^{\infty} \frac{10^{k} x^{2k}}{k!}$$

b.
$$\sum_{k=1}^{\infty} \frac{(x-1)^{k}}{k3^{k}}$$

c.
$$\sum_{k=0}^{\infty} \frac{(2x-1)^{k}}{k^{2}+1}$$

2. Find the Taylor Series for each of the following

a.
$$f(x) = \sin x$$
 and $x = \pi/2$.
b. $f(x) = \frac{1}{(x-4)^2}$ for $x = 5$
c. $f(x) = \frac{1}{3x-2}$ at $x = 2$.

3. Given that $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ and $\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$, find the power series for each of the following.

a.
$$g(x) = x^2 e^{3x}$$

b. $g'(x)$
c. $\int \frac{\sin x}{x} dx$
d. $\int \frac{e^x - 1}{x} dx$

- 4. For the parametric curve $x = t^2 + 4$, y = 2 t for $-4 \le t \le 4$
 - a. Eliminate the parameter to obtain an equation in x and y.
 - b. Graph the curve.
- 5. Find an equation of the line tangent to the cycloid $x = t \sin t$, $y = 1 \cos t$ at $t = \pi/6$.
- 6. Plot the point with polar coordinates $(2, 5\pi/6)$, then find the Cartesian coordinates of the points.
- 7. For the point with Cartesian coordinate $(-\sqrt{3},3)$:
 - a. Find the polar coordinates (r, θ) of the point where r > 0 and $0 \le \theta < 2\pi$.
 - b. Find the polar coordinates (r, θ) of the point where r < 0 and $0 \le \theta < 2\pi$.

8. Replace the Cartesian equation by the equivalent polar equation.

a. x + y = 4b. $(x - 5)^2 + y^2 = 25$

9. Replace the polar equation by the equivalent Cartesian equation. Then describe or identify each.

a.
$$r = 4 \csc \theta$$

b. $r = 8 \cos \theta - 10 \sin \theta$

10. Write the equation of the tangent line to the curve $r = 1 + \sin \theta$ at $\theta = \frac{3\pi}{4}$.

11. Graph the polar equation

a.
$$r = 4 \sin \theta$$

b. $r = 2 + 2 \cos \theta$
c. $r = 5 \cos 3\theta$

- 12. Find the area that lies inside both curves $r = \sin 2\theta$ and $r = \sin \theta$.
- 13. Find the area of the region enclosed by the inner loop of $r = \frac{1}{2} \cos \theta$. Set up the integral but do not evaluate.

