1. Find the interval and radius of convergence for each of the following
a. $\sum_{k=0}^{\infty} \frac{10^{k} x^{2 k}}{k!}$
b. $\sum_{k=1}^{\infty} \frac{(x-1)^{k}}{k 3^{k}}$
c. $\sum_{k=0}^{\infty} \frac{(2 x-1)^{k}}{k^{2}+1}$
2. Find the Taylor Series for each of the following
a. $f(x)=\sin x$ and $x=\pi / 2$.
b. $f(x)=\frac{1}{(x-4)^{2}}$ for $x=5$
c. $f(x)=\frac{1}{3 x-2}$ at $x=2$.
3. Given that $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ and $\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}$, find the power series for each of the following.
a. $g(x)=x^{2} e^{3 x}$
b. $g^{\prime}(x)$
c. $\int \frac{\sin x}{x} d x$
d. $\int \frac{e^{x}-1}{x} d x$
4. For the parametric curve $x=t^{2}+4, y=2-t$ for $-4 \leq t \leq 4$
a. Eliminate the parameter to obtain an equation in x and y.
b. Graph the curve.
5. Find an equation of the line tangent to the cycloid $x=t-\sin t, y=1-\cos t$ at $t=\pi / 6$.
6. Plot the point with polar coordinates $(2,5 \pi / 6)$, then find the Cartesian coordinates of the points.
7. For the point with Cartesian coordinate $(-\sqrt{3}, 3)$:
a. Find the polar coordinates (r, θ) of the point where $r>0$ and $0 \leq \theta<2 \pi$.
b. Find the polar coordinates (r, θ) of the point where $r<0$ and $0 \leq \theta<2 \pi$.
8. Replace the Cartesian equation by the equivalent polar equation.
a. $x+y=4$
b. $(x-5)^{2}+y^{2}=25$
9. Replace the polar equation by the equivalent Cartesian equation. Then describe or identify each.
a. $r=4 \csc \theta$
b. $r=8 \cos \theta-10 \sin \theta$
10. Write the equation of the tangent line to the curve $r=1+\sin \theta$ at $\theta=\frac{3 \pi}{4}$.
11. Graph the polar equation
a. $r=4 \sin \theta$
b. $r=2+2 \cos \theta$
c. $r=5 \cos 3 \theta$
12. Find the area that lies inside both curves $r=\sin 2 \theta$ and $r=\sin \theta$.
13. Find the area of the region enclosed by the inner loop of $r=\frac{1}{2}-\cos \theta$. Set up the integral but do not evaluate.

