Guidelines

• Calculators are not allowed.

- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln(2)$, unless they simplify further like $\sqrt{9} = 3$ or $\cos(3\pi/4) = -\sqrt{2}/2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- 1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:	
Print Name:	
Date:	<u>.</u>

- 2. For the point with Cartesian coordinates $(-3\sqrt{3}, -3)$, find polar coordinates (r, θ) with
 - a. (3 points) r > 0 and $0 \le \theta < 2\pi$;

Solution:

$$r = \sqrt{27 + 9} = \sqrt{36} = 6$$
 and $\tan \theta = \frac{-3}{-3\sqrt{3}} = \frac{1}{\sqrt{3}}$ so $\theta = \frac{7\pi}{6}$
So the point is $\left(6, \frac{7\pi}{6}\right)$.

b. (3 points) r < 0 and $0 \le \theta < 2\pi$.

Solution:

For a negative r, we need the angle to be in the quadrant I, opposite quadrant III where the point is.

$$\theta = \frac{7\pi}{6} \pm \pi = \frac{\pi}{6}$$

So the point is $\left(-6, \frac{\pi}{6}\right)$.

3. (8 points) Convert the Cartesian equation $(x-3)^2 + (y-2)^2 = 13$ to the equivalent polar equation.

Solution:

Rewriting the above equation and completing the square we get $(x-3)^2 + (y-2)^2 = 13 \iff x^2 - 6x + 9 + y^2 - 4y + 4 = 13 \iff x^2 - 6x + y^2 - 4y = 0 \iff x^2 + y^2 - 6x - 4y = 0$

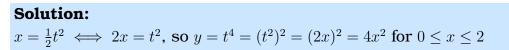
Substitute into the equation above using $r^2 = x^2 + y^2$, $x = 4\cos\theta$, and $y = r\sin\theta$. So $x^2 + y^2 - 6x - 4y = 0 \iff r^2 - 6r\cos\theta - 4\sin\theta = 0 \iff r^2 = 6r\cos\theta + 4r\sin\theta = r(6\cos\theta + 4\sin\theta) \iff r = 6\cos\theta + 4\sin\theta$.

4. (8 points) Convert the polar equation $r = \frac{6}{\cos \theta - \sin \theta}$ to equivalent Cartesian equation.

Solution:

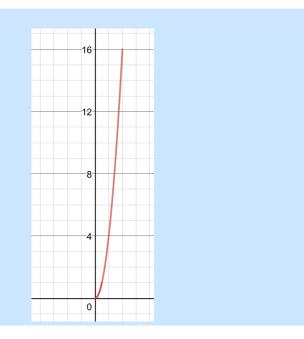
Remember $x = r \cos \theta$ and $y = r \sin \theta$ so, $r = \frac{6}{\cos \theta - \sin \theta} \iff r(\cos \theta - \sin \theta) = 6 \iff r \cos \theta - r \sin \theta = 6 \iff x - y = 6$ or y = x - 6

- 5. Consider the parametric equations $x = \frac{1}{2}t^2$, $y = t^4$ for $-1 \le t \le \sqrt{4}$.
 - a. (6 points) Eliminate the parameter to obtain an equation in x and y.

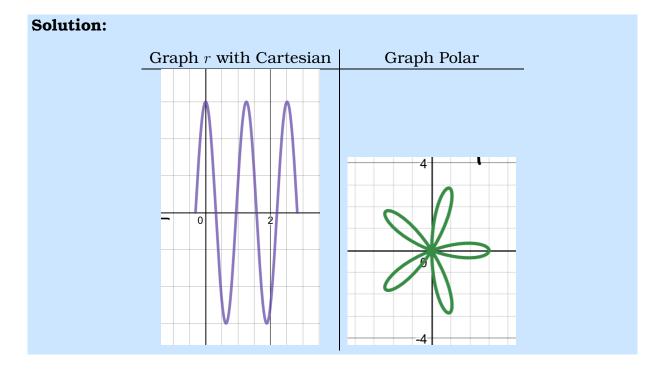


b. (4 points) Sketch the curve.

Solution:



6. (12 points) Sketch the loops of $r = 3\cos(5\theta)$ and find the area enclosed by one loop.



Area

$$A = \frac{1}{2} \int_{-\pi/10}^{\pi/10} 9\cos^2(5\theta) \, d\theta = \frac{9}{2} \cdot \frac{1}{2} \int_{-\pi/10}^{\pi/10} (1 + \cos(10\theta)) \, d\theta$$
$$= \frac{9}{4} \left(\theta + \frac{1}{10} \sin(10\theta) \right) \Big|_{-\pi/10}^{\pi/10}$$
$$= \frac{9}{4} \left(\left(\frac{\pi}{10} + \frac{\pi}{10} \right) + \frac{1}{10} \left(\sin(\pi) - \sin(-\pi) \right) \right)$$
$$= \frac{9}{4} \cdot \frac{\pi}{5} = \frac{9\pi}{20}.$$

7. (8 points) Find an equation of the line tangent to the parametric curve $x = \cos(2t)$, $y = \sin(3t)$ at $t = -\frac{\pi}{12}$

Solution:

To find the slope first find $\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3\cos(3t)}{-2\sin(2t)}$: so the slope $m = \frac{dy}{dx}\Big|_{t=-\pi/12} = \frac{3\cos(\pi/4)}{-2\sin(-\pi/6)} = \frac{3\cdot\sqrt{2}/2}{-2\cdot-1/2} = \frac{3\sqrt{2}}{2}$ and $x_0 = \cos(-\pi/6) = \frac{\sqrt{3}}{2}$ and $y_0 = \sin(-\pi/4) = -\frac{\sqrt{2}}{2}$ Thus the tangent line is $y + \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}\left(x - \frac{\sqrt{3}}{2}\right)$

8. (8 points) Find the slope of the tangent line to the polar curve $r = 8 \sin \theta$ at $\theta = \frac{5\pi}{6}$.

Solution:

Note: $f'(\theta) = 8\cos\theta$.

To find the slope first find $\frac{dy}{dx}$

 $\frac{dy}{dx} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta} = \frac{8\cos\theta\sin\theta + 8\sin\theta\cos\theta}{8\cos\theta\cos\theta - 8\sin\theta\sin\theta};$ $\frac{dy}{dx}\Big|_{\theta=5\pi/6} = \frac{8\cdot-\sqrt{3}/2\cdot1/2 + 8\cdot1/2\cdot-\sqrt{3}/2}{8\cdot-\sqrt{3}/2\cdot-\sqrt{3}/2 - 8\cdot1/2\cdot1/2} = \frac{-4\sqrt{3}}{4} = -\sqrt{3}$

9. (12 points) Determine the radius and interval of convergence for the series $\sum_{k=1}^{\infty} \frac{(x+3)^k}{k \, 5^k}$

Solution: $\lim_{k \to \infty} \left| \frac{(x+3)^{k+1}}{(k+1)5^{k+1}} \cdot \frac{k5^k}{(x+3)^k} \right| = \frac{|x+3|}{5} \lim_{k \to \infty} \frac{k}{k+1} = \frac{|x+3|}{5} < 1$ So the series converges if $-1 < \frac{x+3}{5} < 1 \iff -5 < x+3 < 5 \iff -8 < x < 2$

Check the endpoints: if $x = 2 \sum \frac{5^k}{k \cdot 5^k} = \sum \frac{1}{k}$ which is a divergent p-series since p = 1. if $x = -8 \sum_{k \to 5^{k}} \frac{(-5)^{k}}{k \cdot 5^{k}} = \sum_{k \to 5^{k}} \frac{(-1)^{k}}{k}$ which is the alternating harmonic series that

So the interval of convergence $-8 \le x < 2$ and the radius is 5.

10. (12 points) Find the Taylor Series for $f(x) = \frac{1}{3x-2}$ at a = 2.

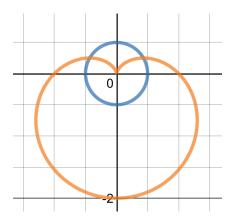
Solution:

k	$f^{(k)}(x)$	$f^k(2)$
0	$(3x-2)^{-1}$	$(4)^{-1}$
1	$-(3x-2)^{-2}\cdot 3$	$-(4)^{-2} \cdot 3$
2	$(1)(2)(3x-2)^{-3}\cdot 3\cdot 3$	$2! \cdot (4)^{-3} \cdot 3^2$
3	$-(1)(2)(3)(2x+2)^{-4} \cdot 2^2 \cdot 2$	$-3! \cdot (4)^{-4} \cdot 3^{3}$
4	$(1)(2)(3)(4)(2x+2)^{-5} \cdot 2^3 \cdot 2$	$4! \cdot (4)^{-5} \cdot 3^4$
So $f^{(k)}(2) = (-1)^k k! 3^k 4^{-(k+1)} = \frac{(-1)^k k! 3^k}{4^{k+1}}$		

And the Taylor Series is

$$f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k k! 3^k}{4^{k+1}} \cdot \frac{1}{k!} (x-2)^k = \sum_{k=0}^{\infty} \frac{(-1)^k 3^k}{4^{k+1}} (x-2)^k$$

11. (8 points) Find the area inside the circle $r = \frac{1}{2}$ and outside $r = 1 - \sin \theta$. Set up the integral; but, do not evaluate.



Solution:

Points of Intersection:
$$1 - \sin \theta = \frac{1}{2} \iff \sin \theta = \frac{1}{2}$$
 so $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$

Area

$$A = 2\left[\frac{1}{2}\int_{\pi/6}^{\pi/2} \left(\frac{1}{2}\right)^2 d\theta - \frac{1}{2}\int_{\pi/6}^{\pi/2} (1-\sin\theta)^2 d\theta\right]$$

Question	Points	Score
1	8	
2	6	
3	8	
4	8	
5	10	
6	12	
7	8	
8	8	
9	12	
10	12	
11	8	
Total:	100	