Name
 Calculus II
 August 2, 2019

Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature: \qquad
Print Name: \qquad
Date: \qquad
2. For the point with Cartesian coordinates $(-3 \sqrt{3},-3)$, find polar coordinates (r, θ) with
a. (3 points) $r>0$ and $0 \leq \theta<2 \pi$;

Solution:

$r=\sqrt{27+9}=\sqrt{36}=6$ and $\tan \theta=\frac{-3}{-3 \sqrt{3}}=\frac{1}{\sqrt{3}}$ so $\theta=\frac{7 \pi}{6}$
So the point is $\left(6, \frac{7 \pi}{6}\right)$.
b. (3 points) $r<0$ and $0 \leq \theta<2 \pi$.

Solution:

For a negative r, we need the angle to be in the quadrant I, opposite quadrant III where the point is.
$\theta=\frac{7 \pi}{6} \pm \pi=\frac{\pi}{6}$
So the point is $\left(-6, \frac{\pi}{6}\right)$.
3. (8 points) Convert the Cartesian equation $(x-3)^{2}+(y-2)^{2}=13$ to the equivalent polar equation.

Solution:

Rewriting the above equation and completing the square we get $(x-3)^{2}+(y-$ $2)^{2}=13 \Longleftrightarrow x^{2}-6 x+9+y^{2}-4 y+4=13 \Longleftrightarrow x^{2}-6 x+y^{2}-4 y=0 \Longleftrightarrow$ $x^{2}+y^{2}-6 x-4 y=0$

Substitute into the equation above using $r^{2}=x^{2}+y^{2}, x=4 \cos \theta$, and $y=r \sin \theta$. So $x^{2}+y^{2}-6 x-4 y=0 \Longleftrightarrow r^{2}-6 r \cos \theta-4 \sin \theta=0 \Longleftrightarrow r^{2}=6 r \cos \theta+4 r \sin \theta=$ $r(6 \cos \theta+4 \sin \theta) \Longleftrightarrow r=6 \cos \theta+4 \sin \theta$.
4. (8 points) Convert the polar equation $r=\frac{6}{\cos \theta-\sin \theta}$ to equivalent Cartesian equation.

Solution:

Remember $x=r \cos \theta$ and $y=r \sin \theta$ so,

$$
\begin{aligned}
& r=\frac{6}{\cos \theta-\sin \theta} \\
& 6 \text { or } y=x-6
\end{aligned} \Longleftrightarrow r(\cos \theta-\sin \theta)=6 \Longleftrightarrow r \cos \theta-r \sin \theta=6 \Longleftrightarrow x-y=
$$

5. Consider the parametric equations $x=\frac{1}{2} t^{2}, y=t^{4}$ for $-1 \leq t \leq \sqrt{4}$.
a. (6 points) Eliminate the parameter to obtain an equation in x and y.

Solution:

$$
x=\frac{1}{2} t^{2} \Longleftrightarrow 2 x=t^{2}, \text { so } y=t^{4}=\left(t^{2}\right)^{2}=(2 x)^{2}=4 x^{2} \text { for } 0 \leq x \leq 2
$$

b. (4 points) Sketch the curve.

Solution:

6. (12 points) Sketch the loops of $r=3 \cos (5 \theta)$ and find the area enclosed by one loop.

Solution:

Area

$$
\begin{aligned}
A=\frac{1}{2} \int_{-\pi / 10}^{\pi / 10} 9 \cos ^{2}(5 \theta) d \theta & =\frac{9}{2} \cdot \frac{1}{2} \int_{-\pi / 10}^{\pi / 10}(1+\cos (10 \theta)) d \theta \\
& =\left.\frac{9}{4}\left(\theta+\frac{1}{10} \sin (10 \theta)\right)\right|_{-\pi / 10} ^{\pi / 10} \\
& =\frac{9}{4}\left(\left(\frac{\pi}{10}+\frac{\pi}{10}\right)+\frac{1}{10}(\sin (\pi)-\sin (-\pi))\right) \\
& =\frac{9}{4} \cdot \frac{\pi}{5}=\frac{9 \pi}{20} .
\end{aligned}
$$

7. (8 points) Find an equation of the line tangent to the parametric curve $x=$ $\cos (2 t), y=\sin (3 t)$ at $t=-\frac{\pi}{12}$

Solution:

To find the slope first find $\frac{d y}{d x}$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 \cos (3 t)}{-2 \sin (2 t)}:
$$

so the slope $m=\left.\frac{d y}{d x}\right|_{t=-\pi / 12}=\frac{3 \cos (\pi / 4)}{-2 \sin (-\pi / 6)}=\frac{3 \cdot \sqrt{2} / 2}{-2 \cdot-1 / 2}=\frac{3 \sqrt{2}}{2}$ and $x_{0}=$ $\cos (-\pi / 6)=\frac{\sqrt{3}}{2}$ and $y_{0}=\sin (-\pi / 4)=-\frac{\sqrt{2}}{2}$
Thus the tangent line is $y+\frac{\sqrt{2}}{2}=\frac{3 \sqrt{2}}{2}\left(x-\frac{\sqrt{3}}{2}\right)$
8. (8 points) Find the slope of the tangent line to the polar curve $r=8 \sin \theta$ at $\theta=\frac{5 \pi}{6}$.

Solution:

Note: $f^{\prime}(\theta)=8 \cos \theta$.
To find the slope first find $\frac{d y}{d x}$
$\frac{d y}{d x}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}=\frac{8 \cos \theta \sin \theta+8 \sin \theta \cos \theta}{8 \cos \theta \cos \theta-8 \sin \theta \sin \theta}$:
$\left.\frac{d y}{d x}\right|_{\theta=5 \pi / 6}=\frac{8 \cdot-\sqrt{3} / 2 \cdot 1 / 2+8 \cdot 1 / 2 \cdot-\sqrt{3} / 2}{8 \cdot-\sqrt{3} / 2 \cdot-\sqrt{3} / 2-8 \cdot 1 / 2 \cdot 1 / 2}=\frac{-4 \sqrt{3}}{4}=-\sqrt{3}$
9. (12 points) Determine the radius and interval of convergence for the series $\sum_{k=1}^{\infty} \frac{(x+3)^{k}}{k 5^{k}}$

Solution:

$\lim _{k \rightarrow \infty}\left|\frac{(x+3)^{k+1}}{(k+1) 5^{k+1}} \cdot \frac{k 5^{k}}{(x+3)^{k}}\right|=\frac{|x+3|}{5} \lim _{k \rightarrow \infty} \frac{k}{k+1}=\frac{|x+3|}{5}<1$
So the series converges if $-1<\frac{x+3}{5}<1 \Longleftrightarrow-5<x+3<5 \Longleftrightarrow-8<x<2$

Check the endpoints:

if $x=2 \sum \frac{5^{k}}{k \cdot 5^{k}}=\sum \frac{1}{k}$ which is a divergent p -series since $p=1$.
if $x=-8 \sum \frac{(-5)^{k}}{k \cdot 5^{k}}=\sum \frac{(-1)^{k}}{k}$ which is the alternating harmonic series that converges.
So the interval of convergence $-8 \leq x<2$ and the radius is 5 .
10. (12 points) Find the Taylor Series for $f(x)=\frac{1}{3 x-2}$ at $a=2$.

Solution:

k	$f^{(k)}(x)$	$f^{k}(2)$
0	$(3 x-2)^{-1}$	$(4)^{-1}$
1	$-(3 x-2)^{-2} \cdot 3$	$-(4)^{-2} \cdot 3$
2	$(1)(2)(3 x-2)^{-3} \cdot 3 \cdot 3$	$2!\cdot(4)^{-3} \cdot 3^{2}$
3	$-(1)(2)(3)(2 x+2)^{-4} \cdot 2^{2} \cdot 2$	$-3!\cdot(4)^{-4} \cdot 3^{3}$
4	$(1)(2)(3)(4)(2 x+2)^{-5} \cdot 2^{3} \cdot 2$	$4!\cdot(4)^{-5} \cdot 3^{4}$

So $f^{(k)}(2)=(-1)^{k} k!3^{k} 4^{-(k+1)}=\frac{(-1)^{k} k!3^{k}}{4^{k+1}}$
And the Taylor Series is
$f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} k!3^{k}}{4^{k+1}} \cdot \frac{1}{k!}(x-2)^{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k} 3^{k}}{4^{k+1}}(x-2)^{k}$
11. (8 points) Find the area inside the circle $r=\frac{1}{2}$ and outside $r=1-\sin \theta$. Set up the integral; but, do not evaluate.

Solution:

Points of Intersection: $1-\sin \theta=\frac{1}{2} \Longleftrightarrow \sin \theta=\frac{1}{2}$ so $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$
Area

$$
A=2\left[\frac{1}{2} \int_{\pi / 6}^{\pi / 2}\left(\frac{1}{2}\right)^{2} d \theta-\frac{1}{2} \int_{\pi / 6}^{\pi / 2}(1-\sin \theta)^{2} d \theta\right]
$$

Question	Points	Score
1	8	
2	6	
3	8	
4	8	
5	10	
6	12	
7	8	
8	8	
9	12	
10	12	
11	8	
Total:	100	

