Guidelines

- Calculators are not allowed.
- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln (2)$, unless they simplify further like $\sqrt{9}=3$ or $\cos (3 \pi / 4)=-\sqrt{2} / 2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.

1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:
Print Name:
\qquad
Date: \qquad
2. For the point with rectangular coordinates $(-1, \sqrt{3})$, find polar coordinates with
a. (3 points) $r>0$ and $0 \leq \theta<2 \pi$;

$$
\begin{aligned}
& r=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{1+3} \\
&=\sqrt{4}=2 \\
& \tan \theta=\frac{y}{x}=\frac{\sqrt{3}}{-1} \Rightarrow \theta=\frac{2 \pi}{3}
\end{aligned}
$$

$$
(r, \theta)=(2,2 \pi / 3)
$$

b. (3 points) $r<0$ and $0 \leq \theta<2 \pi$.

$$
\theta=\frac{5 \pi}{3} \quad \Rightarrow \quad(r, \theta)=(-2,5 \pi / 3)
$$

3. (8 points) Convert the polar equation $r=2 \cos \theta-6 \sin \theta$ to rectangular coordinates and describe the curve it represents.

$$
\begin{aligned}
& r=2 \cos \theta-6 \sin \theta \Rightarrow r^{2}=2 r \cos \theta-6 r \sin \theta \\
\Rightarrow & x^{2}+y^{2}=2 x-6 y \Rightarrow x^{2}-2 x+1-1+y^{2}+6 y+9-9=0 \\
\Rightarrow & (x-1)^{2}+(y+3)^{2}=10 \quad \text { Circle centered at }(1,-3) \omega / \mathrm{rad} / 10
\end{aligned}
$$

4. (8 points) Sketch the polar curve $r=\frac{1}{2}-\sin \theta$.

5. (8 points) Set up, but do not evaluate, an integral representing the area enclosed by the inner loop of $r=\frac{1}{2}-\sin \theta$.

$$
A=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left(\frac{1}{2}-\sin \theta\right)^{2} d \theta
$$

6. Consider the parametric equations $x=e^{t}, y=3 e^{-2 t}$ for $0 \leq t \leq \ln 3$.
a. (6 points) Eliminate the parameter to obtain an equation in x and y.

$$
\begin{aligned}
& x=e^{t} \Rightarrow y=3\left(e^{t}\right)^{-2}=3 x^{-2}=\frac{3}{x^{2}} \quad 1 \leq x \leq 3 \\
& 0 \leqslant t \leq \ln 3
\end{aligned}
$$

b. (4 points) Sketch the curve.

7. Write each complex number in the form $x+y i$.
a. (4 points) $\begin{aligned} i^{77} & =\left(i^{4}\right)^{19} \cdot i \\ & =i\end{aligned}$

$$
\begin{gathered}
19 \\
4 \longdiv { 7 7 } \\
\frac{4}{37} \\
\frac{36}{1}
\end{gathered}
$$

b. (4 points) $\frac{2-3 i}{-1+5 i} \cdot \frac{-1-5 i}{-1-5 i}=\frac{-2-15+3 i-10 i}{1+25}$

$$
=\frac{-17}{26}-\frac{7}{26} i
$$

8. (8 points) Find the point (x, y) where the tangent line to the parametric curve $x=t^{2}-9$, $y=t^{2}-8 t$ is horizontal.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y \mid d t}{d x \mid d t}=\frac{2 t-8}{2 t}=0 \\
& \quad \text { if } \quad 2 t-8=0 \quad t=4 \\
& \quad \Rightarrow \rho t \quad(16-9,16-32)=(7,-16)
\end{aligned}
$$

9. (8 points) Find an equation of the tangent line to the polar curve $r=8 \sin \theta$ at $\theta=\frac{5 \pi}{6}$.

$$
\begin{array}{rlrl}
x & =\left.r \cos \theta\right|_{\theta=5 \pi / 6}=4\left(-\frac{\sqrt{3}}{2}\right)=-2 \sqrt{3} & r & =8 \sin 5 \pi / 6 \\
y & =\left.r \sin \theta\right|_{\theta=5 \pi / 6}=4\left(\frac{1}{2}\right)=2 & & =8\left(\frac{1}{2}\right)=4 \\
\frac{d y}{d x} & =\left.\frac{r^{\prime} \sin \theta+r \cos \theta}{r^{\prime} \cos \theta-r \sin \theta}\right|_{\theta=5 \pi / 6} & r^{\prime}=8 \cos \theta \\
& =\frac{-4 \sqrt{3}\left(\frac{1}{2}\right)+4(\sqrt{3} / 2)}{-4 \sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)-4\left(\frac{1}{2}\right)}=\frac{-2 \sqrt{3}+2 \sqrt{3}}{6-2}=0 & r_{\theta=\frac{\sin }{6}=8\left(-\frac{\sqrt{3}}{2}\right)}=0=-4 \sqrt{3} \\
y-2=0(x+2 \sqrt{3}) & & y=2 & \\
& y=y
\end{array}
$$

10. (8 points) Write $(-1+i)^{8}$ in the form $x+y i$ without expanding.

$$
\begin{aligned}
&-1+i \Rightarrow r=\sqrt{1+1}=\sqrt{2} \quad \tan \theta=\frac{1}{-1} \Rightarrow \theta=\frac{3 \pi}{4} \\
&-1+i=\sqrt{2} e^{i 3 \pi / 4} \\
&(-1+i)^{8}=\left(\sqrt{2} e^{i 3 \pi / 4}\right)^{8}=2^{4} e^{i 6 \pi} \\
&=16(\cos 6 \pi+i \sin 6 \pi) \\
&=16
\end{aligned}
$$

11. (8 points) Find all complex cube roots of -27 .

$$
\begin{array}{ll}
-27=27(\cos \pi+i \sin \pi)=27 e^{i \pi} \\
r=\sqrt[3]{27}=3 & \\
3 \theta=\pi+2 k \pi & \omega_{1}=3 e^{i \pi / 3}=3(\cos \pi / 3+i \sin \pi / 3) \\
\theta=\frac{\pi}{3}+\frac{2 k \pi}{3} & \omega_{2}=3 e^{i \pi}=-3 \\
\pi / 3, \pi, 5 \pi / 3 & \omega_{3}=3(\cos 5 \pi / 3+i \sin 5 \pi / 3) \\
&
\end{array}
$$

12. (12 points) Calculate the area inside both the cardioid $r=1-\cos \theta$ and the circle $r=\frac{1}{2}$.

$$
\begin{aligned}
& 1-\cos \theta=\frac{1}{2} \\
& \frac{1}{2}=\cos \theta \quad \theta=\pi / 3 \\
& A=2 \cdot \frac{1}{2} \int_{0}^{\pi / 3}(1-\cos \theta)^{2} d \theta+2 \cdot \frac{1}{2} \int_{\pi / 3}^{\pi}\left(\frac{1}{2}\right)^{2} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& A=\int_{0}^{\pi / 3}\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta+\left.\frac{1}{4} \theta\right|_{\pi / 3} ^{\pi} \\
& =\left.\theta\right|_{0} ^{\pi / 3}-\left.2 \sin \theta\right|_{0} ^{\pi / 3}+\left.\frac{1}{2}\left(\theta+\frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{\pi / 3}+\left.\frac{1}{4} \theta\right|_{\pi / 3} ^{\pi} \\
& =\frac{\pi}{3}-2 \sin \frac{\pi}{3}+\frac{1}{2}\left(\frac{\pi}{3}\right)+\frac{1}{4} \sin \frac{2 \pi}{3}+\frac{1}{4}(\pi-\pi / 3) \\
& =\frac{\pi}{3}-2 \frac{\sqrt{3}}{2}+\frac{\pi}{6}+\frac{1}{4} \frac{\sqrt{3}}{2}+\frac{1}{4} \frac{2 \pi}{3} \\
& =\frac{\pi}{3}+\frac{\pi}{6}+\frac{\pi}{6}-\sqrt{3}+\frac{\sqrt{3}}{6}=\frac{2 \pi}{3}-\frac{5 \sqrt{3}}{6}
\end{aligned}
$$

Question	Points	Score
1	8	
2	6	
3	8	
4	8	
5	8	
6	10	
7	8	
8	8	
9	8	
10	8	
11	8	
12	12	
Total:	100	

