Exam 4	Name	
Math 132-01	Calculus II	November 30, 2018

Guidelines

• Calculators are not allowed.

- Read the questions carefully. You have 65 minutes; use your time wisely.
- You may leave your answers in symbolic form, like $\sqrt{3}$ or $\ln(2)$, unless they simplify further like $\sqrt{9} = 3$ or $\cos(3\pi/4) = -\sqrt{2}/2$.
- Put a box around your final answers when relevant.
- Show all steps in your solutions and make your reasoning clear. Answers with no explanation will not receive full credit, even when correct.
- Use the space provided. If necessary, write "see other side" and continue working on the back of the same page.
- 1. (8 points) To be completed once exams are graded and returned. Please correct any problem with points deducted. All corrections should be completed neatly on a separate sheet of paper. Once you have finished your corrections, take your exam and corrections to the Office of Student Learning (OSL), and a tutor will check your answers and sign below. The checked solutions should be given to your instructor.

Signature:	
Print Name:	
Date:	

- 2. For the point with rectangular coordinates $(-1,\sqrt{3})$, find polar coordinates with
 - a. (3 points) r > 0 and $0 \le \theta < 2\pi$;

b. (3 points) r < 0 and $0 \le \theta < 2\pi$.

3. (8 points) Convert the polar equation $r = 2\cos\theta - 6\sin\theta$ to rectangular coordinates and describe the curve it represents.

4. (8 points) Sketch the polar curve $r = \frac{1}{2} - \sin \theta$.

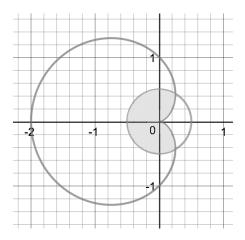
5. (8 points) Set up, but do not evaluate, an integral representing the area enclosed by the inner loop of $r = \frac{1}{2} - \sin \theta$.

- 6. Consider the parametric equations $x = e^t$, $y = 3e^{-2t}$ for $0 \le t \le \ln 3$.
 - a. (6 points) Eliminate the parameter to obtain an equation in x and y.

b. (4 points) Sketch the curve.

- 7. Write each complex number in the form x + yi.
 - a. (4 points) i^{77}

b. (4 points)
$$\frac{2-3i}{-1+5i}$$


8. (8 points) Find the point (x, y) where the tangent line to the parametric curve $x = t^2 - 9$, $y = t^2 - 8t$ is horizontal.

9. (8 points) Find an equation of the tangent line to the polar curve $r = 8 \sin \theta$ at $\theta = \frac{5\pi}{6}$.

10. (8 points) Write $(-1+i)^8$ in the form x + yi without expanding.

11. (8 points) Find all complex cube roots of -27.

12. (12 points) Calculate the area inside both the cardioid $r = 1 - \cos \theta$ and the circle $r = \frac{1}{2}$.

Question	Points	Score
1	8	
2	6	
3	8	
4	8	
5	8	
6	10	
7	8	
8	8	
9	8	
10	8	
11	8	
12	12	
Total:	100	